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Abstract

We describe MARS, a shared-key (symmetric) block cipher supporting 128-bit blocks and
variable key size. MARS is designed to take advantage of the powerful operations supported in
today’s computers, resulting in a much improved security/performance tradeoff over existing
ciphers. As a result, MARS offers better security than triple DES while running significantly
faster than single DES. The current C implementation runs at rates of about 65 Mbit/sec. on
a 200 MHz Pentium-Pro, and 85 Mbit/sec. on a 200 MHz PowerPC. In hardware, MARS
can achieve a 10 speedup factor. Still, both hardware and software implementations of
MARS are remarkably compact, and easily fit on a smartcard and in other limited-resource
environments. The combination of high security, high speed, and flexibility, makes MARS an
excellent choice for the encryption needs of the information world well into the next century.
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1 Introduction

Shared-key (symmetric) encryption is perhaps the most fundamental cryptographic task. Itis used
in a large variety of applications, including protection of the secrecy of login passwords, ATM
PINS, e-mail messages, video transmissions (such as pay-per-view movies), stored data files, and
Internet-distributed digital content. It is also used to protect the integrity of banking and point-of-
sale transactions, in key distribution protocols (such as Kerberos), and many other applications.

The current standard for shared-key encryption is the DES cipher, which was developed by IBM in
the early 70’s [4]. Although DES has provided a secure encryption algorithm for the past 25 years,
its block-length and key-length limitations — combined with the advances in computing technology
— necessitate the design of a new cipher for use in the next 25 years. In this document we describe
a design for a new cipher, MARS, which is well suited for this job.

1.1 The MARS cipher

MARS is a shared-key block cipher, with a block size of 128 bits and a variable key size, ranging
from 128 to 1248 bitd. It was designed to meet and exceed the requirements for a standard for
shared-key encryption in the next few decades. The main theme behind the design of MARS is to
get the best security/performance tradeoff by utilizing the strongest tools and techniques available
today for designing block ciphers. As a result, MARS provides a very high level of security,
combined with much better performance than other existing ciphers.

We estimate that MARS offers better security than triple-DES. In particular, we estimate that all
the known cryptanalytical attacks (including linear and differential cryptanalysis) require more
data than is available {28), and hence these attacks are impossible against MARS. Also, the
design principles of MARS make it likely that MARS would remain resilient even in the face of
new cryptanalytical techniques.

As for efficiency, we estimate that a fully optimized software implementation of MARS can be
made to run at rates exceeding 100 Mbit/sec. on the high-end computers available today. We
currently have a C implementation which runs at 65 Mbit/sec. on a 200 MHz Pentium-Pro and
85 Mbit/sec. on a 200 MHz PowerPC, and dedicated hardware can achieve an additional 10
speedup factor.

1.2 Rationale and design choices

Below, we explain the rationale behind the design of MARS and discuss various choices made in
this design. Throughout the design process we capitalized on the following principles:

Choice of operationsMARS is designed to be used in the computer environments of today and
tomorrow. We thus use the full menu of “strong operations” supported in modern computers
to achieve better security properties. This approach enables us to get a much better security-

1The main objective in allowing key-lengths beyond 256 bits is convenience (rather than security). For example, a
key which is derived from a Diffie-Hellman exchange is usually much longer than 256 bits.
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per-instruction ratio for our software implementation of MARS than is possible for existing
ciphers.

In particular, the design of MARS takes full advantage of the ability of today’s computers to
perform fast multiplications and data-dependent rotations. We discuss these operations (and
their combination) in more detail in Subsection 1.2.1.

The cipher’s structureTwo decades of experience in cryptanalysis has taught us that different
parts in a cipher play very different roles in assuring the security of the cipher. In particular,
it appears that the top and bottom rounds in the cipher usually have a different role than the
middle rounds in protecting against cryptanalytical attacks.

We therefore designed MARS using a mixed structure, where the top and bottom rounds are
designed differently than the middle ones. More on that in Subsection 1.2.2.

Analysis. An important aspect of MARS is that its components are designed to permit extensive
analysis. In every step of the design, we refrained from using operations and structures which
seemed “too hard to analyze”. Instead, we insisted on providing an analysis for every aspect
of the cipher, and we used this analysis to guide us through many of the design choices.

Some choices that we made in the design of MARS include:

Working with 32 bit words.Since most computers today (and in the near future) use word-size of
32 bits, all the operations in MARS are applied to 32-bit words. At the current state of the
technology, this choice provides a good tradeoff between the ability to run the algorithm on
computers which are available today (as well as on legacy systems and even 8-bit proces-
sors), and the ability to take advantage of larger word-size in future architectures.

Type-3 Feistel networkSince MARS has a block length of 128 bits and word-size of 32 bits, it
follows that each block consists of four words. Among the various network-structures which
are capable of handling four words in a block, it seems that a type-3 Feistel network provides
the best tradeoff between speed, strength and suitability for analysis.

A type-3 Feistel network consists of many rounds, where in each round one data word (and a
few key words) are used to modify all the other data words. Compared with a type-1 Feistel
network (where in each round one data word is used to modify one other data word), this
construct provides much better diffusion properties with only a slightly added cost. Hence,
fewer rounds can be used to achieve the same strength.

Additionally, a type-3 Feistel network has advantages over structures in which several data
words are used “at once” to modify other data words, in that these structures are typically
much harder to analyze (and hence, much more prone to design errors). The reason is that
in such structures the analysis must take into account all the possible combinations of values
for the input data words, which quickly leads to unmanageable complexity.

Symmetry of encryption and decryptiowe designed MARS to be as secure against chosen ci-
phertext attacks as against chosen plaintext attacks. This dictates making the cipher very
symmetric, so the last half of the rounds are almost a “mirror image” of the first half.
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1.2.1 Choice of operations

As we explained above, the MARS cipher uses a variety of operations (on 32-bit words). Specif-
ically, it combines exclusive-ors (xors), additions, subtractions, table look-ups, multiplications,
and both fixed and data-dependent rotations. We discuss these operations and their use in MARS
below.

Additions, subtractions and xorg.hese are the simplest operations, which are used to “mix to-
gether” data values (and key values). These operations are very fast in either software or
hardware, and typically are not meant to provide much “cryptographic strength”. Through-
out the cipher we interleave xors with additions and subtractions to ensure that the operations
in the cipher do not commute with each other.

Table look-up.Table look-up operations provide the basis for the security of DES, as well as of
many other ciphers (e.g. [1]). MARS uses a single table of 512 32-bit words, ¢héed
S-box Sometimes the S-box is viewed as two tables, each of 256 entries.

In principle, a carefully chosen S-box can provide good resistance against linear and differ-
ential attacks, as well as good avalanche of data and key bits. A drawback of using S-box
lookups, however, is that it is relatively slow for software implementations. In a word-
oriented cipher like MARS, a typical S-box lookup operation takes three instructions (one to
copy the source word into an index register, one to mask out the high order bits of the index,
and one to access the table itself). Also, a large S-box may take up a considerable amount of
space in hardware implementations.

Another problem is that the index into the table consists of just a few bits (otherwise the
table would be too large). Hence, in order to use all the bits of a data word, one needs to do
several S-box lookups, which slows the cipher even further.

Therefore, S-box lookups are used in MARS only in places where fast avalanche of the key
bits is needed, or in places where it suffices to use only a few bits of the data word (since
other bits are “already taken care of” by other means).

Fixed rotations.Rotations by fixed amounts are mainly used in conjunction with the software
implementation to get the data bits to places where we can use them (e.g., in order to use the
high order bits of a data word as an index to the S-box).

Data-dependent rotationdata-dependent rotations were first used for encryption in a cipher de-
veloped by Becker in IBM in the late 1970’s [2] (and later were used by Madryiga [8] in his
cipher). This operation gained recognition in recent years after it was used by Rivest as the
main building block for the RC5 cipher [12].

Data dependent rotations can be performed quickly in software and hardware. Combined
with arithmetic operations (such as addition), this operation is very effective against linear

cryptanalysis. Also, when carefully used in a cipher it can be made effective against differ-

ential cryptanalysis.

One problem with data-dependent rotations is that specifying a rotation amountbit a
word only takes logv bits. Hence, while the result of this operation depends on all the bits
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in one operand, it only depends on very few bits in the other. This may lead to differential
weaknesses, as was recently demonstrated by Biryukov and Kushilevitz [5].

In MARS we make extensive use of data-dependent rotations, but we solve the problem
mentioned above by combining these operations with multiplications, as described next.

Multiplications. Multiplications were used for encryption in the IDEA cipher and its variants [7].
However, until recently multiplications were considered prohibitively expensive for fast en-
cryption. This was true since old machines took many cycles to perform a single multipli-
cation operatios. Today, this is no longer the case, as essentially all modern architectures
(including PowerPC, Pentium-Pro, Alpha, Ultra-SPARC, and others) support a multiply in-
struction which takes about two cycles to compfete.

Another reason that multiplications were considered so expensive is that IDEA and its vari-
ants insisted on performing multiplications in the field of integers modtfia-2.. Hence,

each multiplication operation had to be coded in software as a sequence of operations, in-
cluding a “native multiplication” modulo®® and a few additional operations.

In MARS, we use “native multiplications” modulc®2, in conjunction with data-dependent
rotations, to obtain very high security. The main cryptographic strength of multiplication
modulo 22 is in the high-order bits of the product, as each of these bits depends on almost
all the bits in the operands in a non-linear fashion. Also, these bits have excellent differential
properties. Therefore, in MARS we use the high order bits of the product to specify the
rotation amounts in the data-dependent rotation operations. This novel combination is what
gives MARS its good resistance to differential cryptanalysis.

It should be noted that multiplication is still a rather expensive operation: even on modern
processors it takes about twice the time of other operations, and in hardware it is even more
costly. Hence we use this operation in moderation: in the entire cipher we only perform 16
multiplications (compared to 32 multiplications in IDEA). As a result, we estimate that the
multiplications only take about 30% of the time and less than 20% of the area in a typical
hardware implementation of MARS, and they take less than 10% of the time in our software
implementation.

A final point about the usage of multiplications in MARS has to do with our ability to analyze
them: Analyzing a multiplication of two data words turns out to be a very hard task. As a
result, in MARS we only multiply data words by key words. In addition, in the key expansion
process we check the key words used for multiplication to avoid some “obviously weak”
words (such as,t1, or even integers). Restricting ourselves to data-key multiplications
enables us to provide a substantial analysis for this operation, which we use to analyze the
security of the cipher.

2Multiplication took at least 50 cycles in the original SPARC architecture, about 40 in the Intel 486, and about 10
in the Intel Pentium.

30n some architectures, the multiplication instruction takes longer by itself, but it can be pipelined with other
instructions, resulting in an effective time of two cycles per operation.
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1.2.2 Using a mixed structure

Many cryptanalytical techniques (including linear and differential cryptanalysis) treat the top and
bottom rounds of the cipher differently than the middle rounds. Typically, these techniques begin
by guessing several key bits, hence “stripping out” some of the top/bottom rounds of the cipher,
and then mounting the cryptanalytical attack against the remaining rounds. This suggests that the
top and bottom rounds of the cipher play a different role than the middle rounds in protecting
against cryptanalytical attacks. Specifically, for these rounds we care more about fast avalanche
of the key bits (which is a combinatorial property) than about resistance to cryptanalysis. The-
oretical evidence for the different role played by the top and bottom rounds can be found in the
Naor-Reingold constructions [11], in which a “cryptographic core” is wrapped with some non-
cryptographic mixing.

Therefore, in the design of MARS the middle rounds are viewed as the “cryptographic core” and
are designed differently than the top and bottom rounds, which are viewed as “wrapper layers”.
Specifically, the wrapper layers consist of first adding in key words, and then performing several
rounds of (unkeyed) S-box based mixing, providing rapid avalanche of key bits. The core layer
consists of several rounds of keyed transformation which involves a combination of S-box lookups,
multiplications and data-dependent rotations to get good resistance to cryptanalytical attacks.

Another advantage of this mixed structure is that it is likely to provide better resistance against
new (yet undiscovered) cryptanalytical techniques. Namely, a cipher consisting of two radically
different structures is more likely to be resilient to new attacks than a homogeneous cipher, since in
order to take advantage of a weakness in one structure one has to propagate this weakness through
the other structure. Viewed in this light, the mixed structure can be thought of as an “insurance
policy” to protect the cipher against future advances in cryptanalytical techniques.

1.3 Organization

The rest of the document is organized as follows: In Section 2, we describe the cipher using text,
figures and pseudo-code. This section covers the requirements in Section 2.B.1 in the checklist
(Items 21 through 25). Section 3 describes the computational efficiency of the cipher, and describe
speed measurements and speed estimates for various implementations. This section covers the
requirements in Section 2.B.2 in the checklist (Items 26 through 47). Section 4 contains a statement
of the expected strength and analysis of the algorithm, to meet the requirements in Sections 2.B.4
and 2.B.5 in the checklist (Items 174 through 188). Finally, in Section 5 we discuss some other
issues related to the cipher, such as its usage in standard modes and possible extensions. This
section covers the requirements in Items 191 and 193 in Section 2.B.6 of the checklist.

2 Algorithm Specifications (2.B.1)

MARS takes as input (and produces as output) four 32-bit data words. The cipher itself is word-
oriented, in that all the internal operations are performed on 32-bit words, and hence the internal
structure is endian-neutral (i.e., the same code works on both little-endian and big-endian ma-
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ciphertext: D’'[3] D’[2] D’[1] D’[0]

Figure 1: High-level structure of the cipher

chines). When the input (or output) of the cipher is a byte stream, witlsendianbyte ordering
to interpret each four bytes as one 32-bit word.

2.1 High level structure

The general structure of the cipher is depicted in Figure 1. The cipher consists of a “cryptographic
core” of keyed transformation, which is wrapped with two layers providing rapid key avalanche.

e The first phase provides rapid mixing and key avalanche, to frustrate chosen-plaintext at-
tacks, and to make it harder to “strip out” rounds of the cryptographic core in linear and
differential attacks. It consists of addition of key words to the data words, followed by eight
rounds of S-box based, unkeyed type-3 Feistel mixing (in “forward mode”).

e The second phase is the “cryptographic core” of the cipher, consisting of sixteen rounds of
keyed type-3 Feistel transformation. To ensure that encryption and decryption have the same
strength, we perform the first eight rounds in “forward mode” while the last eight rounds are
performed in “backwards mode”.

e The last phase again provides rapid mixing and key avalanche, this time to protect against
chosen-ciphertext attacks. This phase is essentially the inverse of the first phase, consisting
of eight rounds of the same type-3 Feistel mixing as in the first phase (except in “backwards
mode”), followed by subtraction of key words from the data words.
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Below we describe the cipher in details. In this description we use the following notations:

D[] is an array of 4 32-bit data words. Initially contains the plaintext words, and at the end of
the encryption process it contains the ciphertext words.

K[] is the expanded key array, consisting of 40 32-bit words.

S ] is an S-box, consisting of 512 32-bit words. Below we also denote the first 256 entBes in
by S0 and the last 256 entries I$}.

All the arrays below are 0-based (which means, for example, that the four wdddsame indexed
D[0] throughD[3)).

2.2 Phase one: forward mixing

In this phase we first add a key word to each data word, and then perform eight rounds of unkeyed
type-3 Feistel mixing, combined with some additional mixing operations. In each round we use
one data word (called the source word) to modify the other three data words (called the target
words). We view the four bytes of the source word as indices into two S-b88emdSL, each
consisting of 256 32-bit words, and xor or add the corresponding S-box entries into the other three
data words.

If we denote the four bytes of the source wordgiybl, b2, b3 (wherebO is the lowest byte and
b3 is the highest byte), then we uk®, b2 as indices into the S-bd0 andbl, b3 as indices into
the S-boxS1. We first xorS0[b0] into the first target word, and then a8#[bl] to the same word.
We also add0[b2] to the second target word and x&k[b3] to the third target word. Finally, we
rotate the source word by 24 positions to the right.

For the next round we rotate the four words, so that the current first target word becomes the next
source word, the current second target word becomes the next first target word, the current third
target word becomes the next second target word, and the current source word become the next
third target word.

In addition, after each of four specific rounds we add one of the target words back into the source
word. Specifically, after the first and fifth rounds we add the third target word back into the source
word, and after the second and sixth round we add the first target word back into the source word.
The reasons for these extra mixing operations are to eliminate some easy differential attacks against
the mixing phase (see Subsection 4.2.4), to break the symmetry in the mixing phase and to get
faster avalanche. The forward mixing phase is depicted in Figure 2.

2.3 Main keyed transformation
The “cryptographic core” of the MARS cipher is a type-3 Feistel network, consisting of sixteen

rounds. In each round we use a keyedunction (E for expansion) which is based on a novel
combination of multiplication, data-dependent rotations, and an S-box lookup. This function takes
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as input one data word and returns three data words as output. The structure of the Feistel net-
work is depicted in Figure 3 (for a different picture see also Figure 8), and the E-function itself is
diagrammed in Figure 4. In each round we use one data word as the input to the E-function, and
the three output words from the E-function are added or xored to the other three data words. In
addition, the source word is rotated by 13 positions to the left.

To ensure that the cipher has the same resistance to chosen ciphertext attacks as it has for chosen
plaintext attacks, the three outputs from the E-function are used in a different order in the first
eight rounds than in the last eight rounds. Namely, in the first eight rounds we add the first and
second outputs of the E-function to the first and second target words, respectively, and xor the third
output into the third target word. In the last eight rounds, we add the first and second outputs of
the E-function to the third and second target words, respectively, and xor the third output into the
first target word.

The E-function. The E-function takes as input one data word and uses two more key words to
produce three output words. In this function we use three temporary variables, denoted below by
L,M andR (for left, middle and right). Below we also refer to these variables as the three “lines”
in the function.

Initially, we setR to hold the value of the source word rotated by 13 positions to the left, and we
setM to hold the sum of the source word and the first key word. We then view the lowest nine bits
of M as an index to a 512-entry S-b&(which is obtained by concatenati®) andSl from the
mixing phase), and sétto hold the value of the correspondiBdhox entry.

We then multiply the second key word (constrained to contain an odd integerRiata then
rotateR by 5 positions to the left (so the 5 highest bits of the product becomes the 5 lowest bits
of R after the rotation). Then we x& into L, and also view the five lowest bits Bfas a rotation
amount between 0 and 31, and rotkteo the left by this amount. Next, we rotafeby 5 more
positions to the left and xor it inth. Finally, we again view the five lowest bits Bfas a rotation
amount and rotate to the left by this amount. The first output word of the E-functiom. jghe
second isM and the third iR

Design rationale. In the design of the E-function we tried to combine the different operations in
a way that would maximize the advantages from each. Some properties of this function which are
worth noting are the following:

¢ Recall that when we multiply two words, the lower bits of the input word have larger effect
on the product than the higher bits. Thus, we arrange it so that bits whiclo&ied as input
to the S-boxvill be the lowest bits in the data word which is being multiplied. The amount of
rotation (13 bits) was set to maximize the resistance of the E-function to differential attacks.
See Subsection 4.2 for details.

Also, since the internal structure of the E-function is very sensitive to the location of the
input bits, it makes sense to apply a constant rotation to the data lines, so as to make it hard
for an attacker to maintain a consistent behavior across rounds. Since we use a rotation of
the source word by 13 inside the E-function, we can get a rotation by 13 of the corresponding
data line “for free”.
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¢ Recall also that when we multiply two words, the most significant bits in the product are the
“stronger bits” since they are affected by almost all the input bits. In the combination of the
multiplication and the data-dependent rotation, we therefore arrange it so that these “strong
bits” are used to determine the amount of the data-dependent rotation.

e Since the E-function is supposed to approximate a pseudo-random function, we would like to
make the three lines of the function as “independent of each other” as possible. We thus use
very little interaction between the data in the three lines. This also helps to avoid unwanted
cancellations and makes it harder to obtain a linear approximation of one line in terms of
another.

Where we do mix the lines —in the xors of LiRdnto Line L — we xor the input word twice
and have a fixed rotation by five between these two operations (so, for example, the effects
of these xor operations on the parity of Lihe&ancel each other).

¢ Still trying to guarantee some measure of “independence” between the data lines, we make
sure that the value of one line never completely determines the value of another line. Indeed,
the relative entropy of any two lines is at least 9 bits (of liheR), and gets as high as 32
bits (of linesR, M).

e Since we view LineM as the weakest output of the E-function (as it only carries the sum of
the input and a key word, rotated by some amount), we put it as the middle output line. This
way, it never affects the next data line which is used as a source, but rather a data line which
is used further down in the encryption process.

2.4 Phase three: backwards mixing

The backwards mixing phase is the same as the decryption of the forward mixing phase, except
that the data words are processed in different order. Namely, if we fed the output from the forward
unkeyed mixing into the input of the backwards unkeyed mixing in reverse order (i.e., @igut

goes to inpuD[0], outputD|2] to inputDI1], etc.) then these two phases would cancel each other.

As in the forward mixing, here too we use in each round one source word to modify the other
three target words. Denote the four bytes of the source word®Mpd, b2, b3 as before. We use

b0, b2 as indices into the S-bd andbl, b3 as indices into the S-bd0. We xorS1[b0] into the

first target word, subtrac0[b3] from the second data word, subtr&{b2] from the third target
word and then xo80[b1] also into the third target word. Finally, we rotate the source word by 24
positions to the left.

For the next round we rotate the four words, so that the current first target word becomes the next
source word, the current second target word becomes the next first target word, the current third
target word becomes the next second target word, and the current source word become the next
third target word.

Also, before each of four specific rounds we subtract one of the target words from the source
word: before the fourth and eighth rounds we subtract the first target word from the source word,
and before the third and seventh round we subtract the third target word from the source word. The
backwards mixing phase is depicted in Figure 5.
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2.5 Pseudo-code

Below we describe the cipher using pseudo-code. In this description we use the following nota-
tions: The operations used in the cipher are applied to 32-bit words, which are viewed as unsigned
integers. We number the bits in each word from 0 to 31, where bit O is the least significant (or
lowest) bit, and bit 31 is the most significant (or highest) bit.

We denote by 4 b a bitwise exclusive-or of the two wor@dsandb, aV b andaA b denote bitwise
OR and bitwise AND, respectively. We denotedy- b addition modulo 22, by a— b subtraction
modulo 22, and bya x b multiplication modulo 22,

Also, a < b anda > b, respectively, denote cyclic rotations of the 32-bit wardly b positions to
the left and right. In a left rotation bly, the bit in locationi is moved to location+b mod 32
(for example, the lowest bit is moved from location 0 to locatpnSimilarly, in a right rotation
by b the bit in location is moved to locatiom— b mod 32.

Finally, if X3, . . .Xn are 32-bit words, we use the notatiof, . . ., X, X1) < (Xg, - . ., X3, X2) for n-wise
swap operation. For examplE)[3],D|[2], D[1],DI0]) «+ (D[0],D[3],D[2],D[1]) denotes a rotation
of the 4-word arrayD[ | by one word to the right.

Remark. Notice that the pseudo-code below follows a somewhat different style than Figures 2
and 5. Specifically, to make the pseudo-code shorter we implement the eight mixing rounds in a
loop.

E-function(input:iin, keyl, key?)

1. // we use three temporary variablesM, R

2. M =in+keyl //add first key word

3. R=(in « 13) x key2 /[ multiply by 2nd key wordwhich must be odd
4. i = lowest 9 bits oM

5. L=9i] Il S-box lookup

6. R=R«5

7. r = lowest 5 bits oR Il these bits specify rotation amount
8. M=M<Kr /l 1st data-dependent rotation
9.L=L&R

10.R=R« 5

11.L=L&R

12.r = lowest 5 bits ofR /Il these bits specify rotation amount
1B3L=LKr I/l 2nd data-dependent rotation

14. output(L, M, R)

MARS-encrypt(inputD] |,K[])

Phase (I): Forward mixing
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1. // First add subkeys to data

2. fori=0to3do

3. DJi]=D[i]+K]i]

4. [/ Then do eight rounds of forward mixing

5. fori=0to 7 do I/ usd[0] to modify D[1],D[2], D[3]
6. /[ four S-box look-ups

7. D[1] =D[1] % [ low byte of D[] |

8. DI[1] =DJ[1] + S1] 2nd byte ofD[0] |

9. DJ[2] =DJ[2] + [ 3rd byte ofD[0] ]

10. DI[3] = DI[3] % S1] high byte ofD[0] ]

11. /[ and rotation of the source word to the right
12. D[0]=D|[0] > 24

13. /[ followed by additional mixing operations
14. ifi=0or4then

15. D[0] =D[0] + D[3] // addD[3] back to the source word
16. ifi=1or5then
17. D[0] =D[0]+ D[1] // addD[1] back to the source word

18. /I rotateD[ | by one word to the right for next round
19.  (D[3],D[2],D[1],D[0]) « (D[0], D[3], D[2], D[1])
20. end-for

Phase (I): Keyed transformation

21.// Do 16 rounds of keyed transformation

22.fori=0to 15do

23. (outl,out2, out3d) = E-function D[0], K[2i + 4],K[2i + 5])
24. D[0]=D[0] « 13

25. D[2] =D[2] +out2

26. ifi < 8then /I first 8 rounds in forward mode
27. D[1] = D[1] + outl

28. D[3] = D[3] & out3

29. else /l'last 8 rounds in backwards mode
30. D[3] = D[3] + outl

31. D[1] = D[1] & out3

32. end-if

33. /I rotateD][ | by one word to the right for next round
34.  (D[3],D[2],D([1],D[0]) « (D[0], B3], D[2], D[1])
35. end-for

Phase (lll): Backwards mixing

36. // Do eight rounds of backwards mixing
37.fori=0to 7 do

38. // additional mixing operations

39. ifi=2or6then

17
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40. D[0] =D[0] — D[3]  // subtractD[3] from source word
41. ifi=3or7then
42. D[0] =D[0]—DJ[1] /I subtractD[1] from source word

43. [/ four S-box look-ups

44. DI[1] =D[1] ¢ S1] low byte of D[] ]
45. D[2] = D[2] — 0] high byte ofD[0] |
46. D[3] =D[3] — S1] 3rd byte ofD[0] |
47. D[3] =D[3] & D[ 2nd byte ofD[0] |

48. // and rotation of the source word to the left

49. D[0]=D[0] « 24

50. /I rotateD][ | by one word to the right for next round
51.  (D[3],D[2],D[1],D[0]) - (D[0], D[3], D[2], D[1])

52. end-for

53. /I Then subtract subkeys from data

54. fori=0to 3 do

55. D[i] = DJi] —K[36+1]

2.5.1 Decryption

The decryption process is the inverse of the encryption process. The code for decryption is sim-
ilar (but not identical) to the code for encryption. We provide a pseudo-code for decryption in
Appendix B.

2.6 S-box design

In the design of the S-ba® we generated the entries®in a “pseudorandom fashion” and tested

that the resulting S-box has good differential and linear properties. The “pseudorandom” S-boxes
were generated by setting foe= 0...102 j =0...4, S5i + j] = SHA-1(i | c1 | c2 |c3); (where
SHA-1(-); is the j'th word in the output of SHA-1). Here we vieinas a 32-bit unsigned integer,
andcl, c2,c3 are some fixed constants. In our implementation wecket 0xb7e15162,C2 =
0x243f6a88 (which are the binary expansions of the fractional parts i respectively) and we
varied c3 until we found an S-box with good properties. We view SHA-1 as an operation on
byte-streams, and use little-endian convention to translate between words and bytes.

The properties of the S-box which we tested are the following:

Differential properties. We require that the S-box has the following properties:
(1) The S-box does not contain the all-zero or the all-one word.

(2) Within each of the two S-boxe¥), S1, every two entries differ in at least three of the four
bytes. (We note that it is very unlikely that a random S-box will have this property, and so we
first “fix” the S-box by modifying one of the entries in each pair that violates this condition).
(3) Sdoes not contain two entri&si], §j|(i # j) such that§i] = §j], §i] = —~§j] or Si] =

—gil.
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(4) Shas(°3?) distinct xor-differences and2 (°3%) distinct subtraction-differences.
(5) Every two entries irfs differ by at least four bits.

Linear properties. We try to minimize the following quantities:

(6) Parity bias:\PrX[parity(S[x]) =0 —% . We require that the parity bias &be at most
1/32.

(7) Single-bit biasV j, \PrX[S[x]j =0 —% . We require that the single-bit bias 8fbe at
most /30.

(8) Two consecutive bits bias: j, |Pr[SX]j & SXj+1 = 0] — 3| We require that the two-bit
bias ofSbe at most 130.

(9) Single-bit correlationY i, j, \PrX[S[x]j =Xi| — %\ We minimize this quantity over all the
S-boxes that satisfy the conditions 1-8.

The threshold values in Conditions 6-8 above were set experimentally. The reason for the different
treatment of the single-bit correlation is that its value is usually larger than the other quantities.

We generated the S-box as follows: We went over possible valw3sioincreasing order, starting
fromc3 = 0. For each value, we generated the S-box, and then “fixed it” by going over all the pairs
(i, j) of entries inS0, SL in lexicographic order, and checking if the differer§ig ¢ S j] has two

or more zero bytes. Whenever we found a difference with two or more zero bytes, we reflaced
with 3- §i] and moved on to the nektAfter the “fixing”, we tested the S-box again to verify that

it satisfies all the Conditions (1)-(8) above, and we calculated the single-bit correlation bias (from
ltem (9) above). Our program ran for about a week, going over rougilp@ssible values for

c3. The value ot3 which minimized the single-bit correlation bias w&s= 0x02917d59 . The
resulting S-box is presented in Appendix A. This S-box has parity bidssingle-bit bias at most
1/30, two consecutive bit bias at most 1/32, and single-bit correlation bias less than 1/22.

2.7 Key expansion

The high-level structure of the key expansion routine is depicted in Figure 6. This procedure
expands a given key arr&y | (which consists oh 32-bit words, whera is any number between

4 and 39) into an arral{[ | of 40 words. We note that the original key is not required to have any
structure (in particular, the key does not include any parity bits). In addition, the key expansion
procedure also guarantees that the key words which are used for multiplication in the encryption
procedure have the following properties

e The two lowest bits in a key word which is used for multiplication are set to 1.

¢ None of these key words contains either ten consecutive 0's or ten consecutive 1's.
The procedure consists of four steps

1. Initially, the original key material is expanded using a simple linear transformation. Specifi-
cally, given am-word arrayk] ], we first initialize a 47-word temporary arrdy |, which we
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kO]  K[1] K[n-1] (4 <= n <= 40)
Initial expansion
T[O] T[1] T[2] T[39]
H
9«1. = Stirring
g<k< < v X 7 times
—1S—1 s
<K<
e S
9<k<
\ N Reordering
| | | |
Fixing weak key-words
! ! ! !
K[O] K[1] K[2] K[39]

Figure 6: The key expansion procedure

view as indexed fronT[—7] throughT[39]. The first 7 entries iff | ] are initialized with the
first seven entries in the S-b&«by setting

fori=-7...—1, T[i]=9i+7
Entries 0 through 38 iff | | are filled using the formula
fori=0...38 Tli|=((T[i—7@&T[i—2]) < 3)@®ki modn|®i

and the last entry is set to hold the length of the original RE89 = n. The reason for

this last setting is to eliminate the possibility that two keys of different lengths generate the
same 40-word expanded key (for example, this way we guarantee that the all-zero 4-word
key results in a different expanded key than the all-zero 6-word key).

2. Next we stir the temporary array using seven rounds of type-1 Feistel network. Specifically,
we repeat the operation

T[i] = (T[i]+ Slow 9 bits of T[i — 1]]) « 9, 1=1,2,...39
T[O0] = (T[0] + Slow 9 bits of T[39]]) <« 9
for seven rounds.

3. Then we reorder the words into the expanded key aKay, so that words which were
adjacent in the stirring phase will be far apart in the resulting array. This is done by setting

K[7i mod4Q=T]Ji],i=0,1,...,39
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4. Finally, we go over the sixteen words which are used in the cipher for multiplication (these
are wordK[5],K[7],...,K[35]), and check that none of them is “weak”: We say that a word
w is weak if (wV 3) (i.e., the wordw with the two lowest bits set to 1) contains either ten
consecutive 0's or ten consecutive 1's. See Subsection 4.2 for the reasoning behind this
choice. We note that the probability that a randomly chosen word is weak is abtiut\We
process each of the wor#s5], K[7], .. ., K[35] as follows:

(a) We record the two lowest bits &]i], by settingj = K][i] A 3, and then consider the

(b)

(c)

(d)

word with these two bits set to & = KJi] v 3.

We construct a masi of the bits inw which belong to a sequence of ten (or more)
consecutive 0’s or 1's. Namely, we havig = 1 if and only ifw, belongs to a sequence
of ten consecutive O’s or 1's. Then we reset to 0 the 1®livhich correspond to the
two end-points of every run of O's or 1's i. The two low order bits oM are also
reset to 0.

For example, assume that we have= 02113021001 (where by §1' we denotei
consecutive O's or 1's, respectively). In this case we firsMset 0312°0%, and then we
reset the 1’s in bit positions 4, 15,16 and 28 to et 0111001100,

Next we use a fixed four-word tabE to “fix w’, where the four entries ifB are
chosen so that they (and their cyclic shifts) do not contain any seven consecutive
O's or ten consecutive 1's. Specifically, we use the tdjlg = {0xa4a8d57b,
0x5b5d193b, 0xc8a8309b, 0x73f9a978 }, (these are entries 265 through 268

in the S-box). The reason we chose these entries is that there are only 14 8-bit patterns
which appear twice in these entries (and their cyclic shifts), and no pattern appears
more than twice.

We use the two recorded bijs(from Step (a)) to select an entry froB) and use the
lowest five bits ofK[i + 3] to rotate this entryp = B[] <« (lowest 5 bits oK]i + 3]).

Finally, we xor the patterp into w under the control of the madW, and store the
result inK[i]
K[i] = wé (pAM)

Since the lowest two bits &fl are 0’s, then the lowest two bits Kfi] will be 1's (since
those inw are). Also, the choice d8 guarantees that[i] will not be weak.

We note that this procedure not only guarantees that the WoiglsK|[7]...K[35] are not weak,

but also keeps these words “random”, in the sense that no single word has probability much larger
than in the uniform distribution. In particular, an exhaustive search confirmed that no 20-bit pattern
occurs in these words with probability of more tha23x 2-20. Similarly, no 10-bit pattern
appears with probability larger than0B x 2-10. We use these facts in the analysis of the cipher.

A pseudo-

code for the key expansion procedure is given below.

Key-Expansion(inputk| |, n; output:K[ ])

1. //nis the number of words in the key buffidr], (4 < n < 39)
2. IIK[ ] is the expanded key array, consisting of 40 words
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3. /I T[] is atemporary array, consisting of 47 word$;-7], T[—6], ..., T[39
4. /1B] ] is afixed table of four words
5. /l'Initialize B ]

6. B[] = {0xa4a8d57b, 0x5b5d193b, 0xc8a8309b, 0x73f9a978}

7. Il Initialize T| | with seven constants, then key data
8. T[-7...— 1] =90...6]
9. fori=0to 38do

0. T[i]=({T[i—-7aT[i—2)<3)&ki modn]Ei
1.T[39=n

12. // Do seven rounds of stirring

13. repeat 7 times

14. fori=1to39do

15. T[i] = (TJi]+ Ylow 9 bits of T[i — 1]]) <« 9

16. TI[O]=(T[O]+ Slow 9 bits of T[39]]) « 9  // wrap around end
17. end-repeat

18. fori=0to 39 do /I reorder the key words irnd |
19. KJ7i mod 4Q=TJi]

20. /I Fix “weak” key-words\y is weak if(wV 3) contains ten consecutive 0’s or 1's)
21. fori=5,7,...35do

22. j =least two bits oK]i]

23. w=K]i] with both of the least two bits set to 1

24. |l Generate a bit-madk (if K[i] is not weak theM = 0)
25. M, = 1iff w, belongs to a sequence of ten consecutive 0’s or Vg in
26. and alsd > 2 andw,_1 = w; = Wyi1

27. [l Select a pattern from the fixed table and rotate it
28. r =least five bits oK]i + 3] /I rotation amount
29. p=B[jj«r

30. /I Modify K[i] with p under the control of the mas¥
31. K[i]=wd(pAM)
32. end-for
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3 Computational Efficiency (2.B.2)

Due to the structure of the key expansion procedure, the performance of MARS is essentially inde-
pendent of the key-length used. Hence, below we only provide a single figure for the performance
of MARS on any given platform, and these figures do not change with the key size.

3.1 Software implementation

Since MARS was designed to take full advantage of the powerful operation available on today’'s
computers, it can achieve a very high speed in software. We estimate that a fully optimized assem-
bly implementation of the cipher (on most of the platforms available today) requires about 450-650
machine instructions for encryption of a single 128-bit block. Most of these instructions can be
paired to take advantage of super-scalar architectures, leading to an estimate of about 250-400
cycles for encryption of a single block. On a machine with clock-rate of 200MHz, this estimate
yields encryption rates from 65 to 100 Mbit/sec.

3.1.1 C implementation

We currently have a C implementation of MARS running at rates of 65-85 Mbit/sec on machines
with clock rate of 200MHz. We measured the performance of this implementation of MARS on
the following platforms:

Pentium-Pro Pentium-Pro PowerPC 604e

Borland C++ 5.0 DJGPP (+ pgccl0l1)| C Set ++ 3.1.1
encryption 920 ¥ (28 mbps)| 390 2% (65 mbps)| 300 2°°° (85 mbps)
decryption 920 €5 (28 mbps)| 390 5% (65 mbps)| 300 Y55 (85 mbps)
key-setup 920056¢" 39506y 2050%6¢"
algorithm-setup O cycles 0 cycles 0 cycles
key-change | 9200957 395056 205055

Table 1: Timing measurements for the C implementation of MARS (mbps stands for Mbit/sec).

¢ We measured the performance on the reference platform, which is an IBM-compatible PC,
with a 200MHz Pentium Pro processor and 64MB RAM, running Windows95. On this
machine we used two different compilers to compile the C code. One is the NIST reference
compiler, Borland C++ version 5.0. Unfortunately, the Borland compiler does a very poor
job in taking advantage of the speed potential of MARS. In partictiiarBorland compiler
penalizes algorithms which use data rotations much more than other algorigint® it
implements every rotation operation as three machine instructions (two shifts and an OR)
instead of using the rotate operation which is available in the Intel architecture.
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| | Borland C++5.0] DJGPP (+ pgcc101)
MARS 28 Mbit/sec 65 Mbit/sec
DES (RSAREF)| 10.6 Mbit/sec 16.7 Mbit/sec
Triple-DES 4.4 Mbit/sec 7.3 Mbit/sec

Table 2: Encryption speed of several ciphers using two different compilers.

We therefore also compiled the C implementation using the Pentium-optimizing version of
the Gnu-C compiler (pgcc) version 1.0. This compiler is freely available over the Internet
from http://www.gcc.ml.org , and can be used with most of the Unix variants run-
ning on Intel. In addition it was ported to DOS (under the DJGPP compiler) so it can also
be used under Windows. It is this port (DJGPP version 2.01) that we used for our timing
measurements. The speed of MARS using the two compilers is described in Table 1.

We remark that on the Intel platform there is some tradeoff between the speeds of key gener-
ation and encryption: We can store the S-box in the key schedule itself, thereby saving one
pointer during the encryption process (since the same pointer can be used to point to both
the key and the S-box). This results in a speedup of about 5% in the encryption/decryption,
making it run at about 67 Mbit/sec, but at the same time it implies a 50% slowdown in the
key setup.

¢ We also measured the speed of our C implementation on an RS/6000 43P workstation model
140, with a 200 MHz PowerPC 604e processor and 64MB RAM, running AIX. On this
platform we used the xIC compiler (included in C Set ++ for AlX, version 3.1.1). The
running time of MARS on this platform is also described in Table 1.

To demonstrate the fact that the Borland compiler penalizes algorithms which use data rotations
much more than it penalizes other algorithms, we compare in Table 2 the encryption speed of
MARS to that of DES and triple-DES under the two compilers. It can be seen in that table that the
speed of DES degrades by only about 35% by switching from DJGPP to Borland, while the speed
of MARS is cut by more than a factor of two.

3.1.2 Javaimplementation

We tested the java implementation on the same platforms as the C implementation. On the Intel
platform we used the javac compiler and java interpreter from JDK1.1.6 and the symjit just-in-time
compiler that comes with JDK1.1.6 for Windows. On the PowerPC we used the javac compiler
and java interpreter from JDK1.1.4 and the jitc just-in-time compiler that comes with JDK1.1.4
for AIX. The running time of our implementation is given in Tablé¢ 3n can be seen that the
optimized Java code runs only about 4 times slower than the C code (and is roughly equivalent in
speed to the C implementation of DES).

4The results in Table 3 represent the speed of the low-level word-oriented routines for encryption, decryption
and key-setup. These results do not include the time for byte-to-word conversion, endianess conversion or memory
allocation.
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| Pentium-Pro | PowerPC 604e |
encryption 17609°°5 (14.5 Mbit/sec)| 1280 2°%(19.9 Mbit/sec)
decryption 14809/€C5 (17.3 Mbit/sec)| 124095°5(20.6 Mbit/sec)
key-setup 710056 8480%6;"
algorithm-setup O cycles 0 cycles
key-change | 710095 84805

Table 3: Timing measurements for the Java implementation of MARS.

3.1.3 Memory requirements

Implementations of MARS need 2Kbyte of memory to store the S-box, 160 bytes to store the
expanded key and a few more words to carry the operations of the cipher. This small amount of
memory fits easily in the first-level cache of any modern processor.

3.2 Implementation on 8-bit processors

We estimate that a software implementation of MARS on a simple 8-bit processor would take about
5000 cycles for encryption/decryption of a single block, and about 15000 cycles for key-setup.

The processor model that we use for these estimates has a few general purpose 8-bit registers (we
assume four registers in our estimates). We assume that most of the logic and arithmetic operations
(add, xor, shift, etc.) take a single cycle, either between two registers or between a register and
a memory location. We also estimate that the processor has a multiplication operation which
multiplies two 8-bit values and returns the 16-bit result in two registers, and that this operation
takes four cycles.

With these assumptions, we get the following estimates for the basic operations of MARS:

¢ A multiplication of two 32-bit words can be implemented using six 8 — 16 multiplica-
tions, four 8x 8 — 8 multiplications and 33 other operations. If each multiplication takes
four cycles and the other operations take a single cycle, then we get 73 cycles for a single
32 x 32— 32 multiplication.

¢ A data-dependent-rotation operation on a 32-bit word can be implemented using 8 shifts, 4
or's and 22 other operations. Hence, we can perform it in 34 cycles.

¢ A fixed rotation by 8, 16 or 24 bit positions does not take any time, since it only involves
renaming the variables. A rotation by other fixed amounts takes 12 cycles.

¢ An S-box lookup with 8-bit index takes 8 cycles, and an S-box lookup with 9-bit index takes
12 cycles.

e The other operations on 32-bit words (move, add, subtract, and, or, not, xor) each take 8
cycles to implement on an 8-bit processor.
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| Operation | # of operationg cycles/operation # of cycles|
Multiplication 16 73 1168
Data-dependent rotation 32 34 1088
Fixed rotation 48 12 576
8-bit ] 64 8 512
9-bit S| 16 12 192
others 184 8 1472

| Total encryption/decryption | | 5008 |

| Operation | # of operationg cycles/operation # of cycles|
Data-dependent rotation 16 34 544
Fixed rotation/shift 480 12 5760
9-bit ] 296 12 3552
others 740 8 5920
| Total key setup | | | 15776

Table 4: Estimated speed of MARS on an 8-bit processor

Our estimates for the speed MARS on an 8-bit processor are summarized in Table 4. We note that
on a smartcard with clock rate of 20MHz, these estimates imply an encryption rate of about 500
Kbit/sec. However, it is not clear what is the meaning of this last estimate, since smartcards that
are used for encryption are typically equipped with a dedicated crypto unit, and so can execute
MARS much faster. (We show below that a hardware implementation of MARS can easily fit
on a smartcard). Moreover, even without a dedicated crypto chip, modern smartcard controllers
have much more capabilities than our simple 8-bit processor model. For instance, the Intel 80251
controller can operate on 16-bit words (and even 32-bits words). It is likely that our estimated
speed can be improved by a factor of at leat four on such a processor.

3.3 Hardware implementation

The MARS algorithm lends itself very well to a hardware based implementation. The MARS
algorithm, even in a non-optimal implementation, provides significant performance gains over
software implementations. We estimate the performance advantage avéus the software
implementation.

Our analysis shows that the forward mixing phase (including the key addition and the unkeyed
mixing) can be completed within 9 cycles. The same analysis applies to the backwards mixing
phase, which can also be completed within 9 cycles. For the keyed transformation phase, we've
included only one multiplier in our initial estimates. We've designed one E-function and are using
it for each successive iteration. Therefore, our estimate is that it will take 2 cycles to complete each
E-function, and 32 cycles to complete the sixteen rounds. In total, we estimate that an encryption
of one block takes 50 cycles.

One of our goals in performing a hardware assessment was to get a reasonable combination of size
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an speed. There is considerable reuse of S-boxes,adders, exclusive-or functions, and multipliers
in order to minimize the cell counts. With only one multiplier in our hardware based design, our
performance estimate for MARS is 80MByte/sec, or 640 Mbit/sec. The cell count for this imple-
mentation is approximately 70,000 cells. This count includes circuitry for encryption, decryption
and key generation (but does not include the registers for the sub-keys). The majority of the cell
usage is devoted to the S-boxes, adders, and the mulfiphera basis for comparison, a typical

DES implementation is approximately 28,000 cells.

A count of approximately 70,000 cells is not extraordinary. This cell count will easily fit on all
chips, including smart cards. This small size provides the algorithm with great flexibility and the
ability to be utilized in many varied applications.

Modes of operation that allow pipelining (such as ECB mode, counter mode, or decryption in
CBC mode) can be implemented much faster. In particular, a hardware implementation consisting
of four copies of the mixing rounds and the E-function can produce a throughput of one block
every 8 cycles, resulting in an encryption/decryption rate of 4Gbit/sec. It is even possible to use
four copies of the mixing rounds and eight copies of the E-function to get a throughput of one
block every 4 cycles. The cell count of this last implementation is about 393,000 (which is still
reasonable), and it achieves overall performance of 8 Gbit/sec. It follows that for applications
that only need to decrypt (such as DVD players), we can build a hardware chip of MARS with a
decryption rate of 8 Gbit/sec.

3.4 Other implementations

The MARS algorithm is suitable for implementation in a variety of environments. We previously
demonstrated that the algorithm can be implemented efficiently in both software and hardware.
This flexibility is extremely important since it provides us with an implementation choice for dif-
fering environments which may be constrained either by physical silicon space or memory ap-
plication space. Environments such as smart cards possess both physical and application space
constraints. However, the MARS algorithm can be implemented in silicon which will easily fit
within the smart card specifications and still leave plenty of room for the processor and other logic
functions. If silicon space needs to be conserved, then the algorithm can be executed on the native
8-bit processor, or a combination of a minimal hardware implementation plus the native processor
can be used.

MARS’ characteristics (flexibility, high-speed, security, efficient implementations, etc.) and im-
plementation options are attractive and applicable to Asynchronous Transfer Mode products, High
Definition Television, B-ISDN, voice applications, satellite applications, and many other net-
worked applications. It will provide robust, high speed encryption and decryption capabilities
to every solution. MARS is highly suitable for all of these varied applications.

5Still, less than 20% of this count is due to the multiplier.
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4 Analysis and Expected Strength (2.B.4-2.B.5)

We use the following terminology when talking about the resistance of MARS to certain attacks:

data complexity.The data complexity of an attack is the number of (plaintext,ciphertext) pairs that
an attacker must see (or choose, in the case of chosen plaintext/ciphertext attacks) before it
can distinguish between the cipher and a random permutation.

work load. The work load of an attack is the number of operations it takes. This is always at least
as large as the data complexity, but can sometimes be larger. For example, exhaustive key
search has very low data complexity (typically two or three pairs are enough), but its work
load is exponential in the key length.

key probability. Some of the attacks described in the sequel can only proceed when some of the key
words have special properties. In this case, the key probability of an attack is the probability
that a random key has these special properties. In computing this probability, we assume
that each entry in the expanded key array is chosen independently at random (subject to the
constraints imposed by the key-setup process).

security level.The security level of a cipher relative to a certain attack (or class of attacks) is the
ratio between the work load and success probability of the attack. The success probability
is the probabilistic advantage that the attacker gains in distinguishing between the cipher
and a random permutation. The probability is taken over both the choice of the key and the
randomness used in the attack itself. (For example, if an attack has work lo&btarfckey
probability of 2730, then the security level of the cipher relative to this attacks)2

The (conjectured) security level of a cipher is its security level relative to the (conjectured)
best possible attack. We remark that a cipher with key lengthlafs cannot have security
level of more than 2

Expected strength of MARS. We expect the security level of MARS with arbit key to be 2

for key lengths up to 256 bits. We do not expect the security level to grow as rapidly bes®Snd 2

In particular, there may be attacks with work-load of aboi®2ven when all the key words are
chosen independently. Hence the main reason for using keys longer than 256 bits is convenience,
not security.

We estimate that any linear or differential attacks against MARS must have data complexity of
more than 228, which means that for block-length of 128 bits these attacks are impossible. Below
we justify this estimate by providing crude (though conservative) bounds on the complexity of
such attacks. For these bounds we consider only the “cryptographic core” of MARS (which is
equivalent to analyzing 16R-attacks in the sense of [3], since it entails ignoring the 16 rounds of
mixing in the cipher).

For linear attacks, we argue in Subsection 4.1 that no “constructible” linear approximation of
the keyed transformation has a bias of more thaf®2which implies data complexity of more
than 228 By “constructible” approximation we mean an approximation which is obtained by
combining approximations for the internal operations of the cipher, computing the bias using the
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Piling-up lemma [9]. Although in principle a cipher can also have linear properties which result
from some “global cancellations”, we do not know of any such properties for MARS

For differential attacks [3] we provide two arguments: We first present a heuristic argument ex-
plaining why it is unlikely that one would be able to construct a characteristic of the keyed trans-
formation with probability more than-24C, taken over both the key and the data. We then also
devise a more conservative (and very crude) bound &t%n the probability of any characteristic

of the keyed transformation, where the probability is again taken over both the key and the data.

4.1 Linear analysis

In linear analysis [9] one tries to find a subset of the bit positions in the plaintext, ciphertext and
expanded keys, so that for a uniformly chosen plaintext and expanded key, the probability that the
sum of the bits in these positions is equal to zero modulo 2, will be bounded away fébrguch

a subset is called Bnear approximationof the cipher, and the difference between the obtained
probability and ¥2 is called thebiasof the approximation. In general, the goal of linear analysis

is to find approximations with large bias, since an approximation withdaggsically corresponds

to an attack with work-load and data-complexity of abiyt)?.

Notations. Below, a linear approximation of an operation involving the wosgls. . w, is speci-
fied via a set ofnasks X. .. Xy, such that a certain bit-position wy belongs to the approximation
if and only if the corresponding bit of; is ‘1’ (in this writeup all the words are of length 32-bits).
We describe this approximation by the formula

AW, - .., Wn) BT (w0 %) B ... (Wno Xn) (1)

whered® denotes exclusive-or (i.e. addition modulo 2) andenotes the inner product operation
modulo 2. The bias of this approximation is then

Pr[A(le s 7Wn) = O] - é (2)
where the probability is taken over the uniform choice of all the words which are consithered
inputsto this operation (hence to define the bias we must specify which words are the inputs of the
operation and which are the outputs).

Local and Global approximations. The standard way to devise linear approximations for a
complex operation (such as a cipher) is to combine approximations for some of the internal “basic
operations”. Combining several approximati@qs .. A is done by simply “adding them modulo

2". Namely, the resulting approximationds= A; & ... & Ay, and it consists of all the bit positions

that appeaan odd number of timas all the approximationgy ... A . Below, when we combine
several linear approximations to obtain a new one, we informally say thitdakeapproximations

SFor example, the data-dependent rotation operations in two consecutive rounds neveeaemagher, and so
we have to approximate each of them separately.
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A;...A are combined to obtain global approximation A Clearly, to be of any use, a global
approximation of a cipher must only include bit-positions in the plaintext, ciphertext and key.
Namely, the occurrences of bit-positions in internal variables of the cipher (which appear in the
local approximations) must all cancel out in the global approximation.

We use the Piling-up lemma [9] to compute the bias of the global approximation from the bias of
the local approximations. If the bias of the approximatidns . A is denoted by, .. . by, then the
biasb of the combined approximatiohis computed as

1 |
b=+ [](@ 3)

We note that this formula assumes that the inputs to the different operations are chosen indepen-
dently (which is usually not the case), and so the formula represents only a heuristic evaluation of
the bias ofA.

Treatment of key bits in linear approximations. In principle, one can treat the key bits in a
linear approximation differently than the data bits. For example, we can use an approximation
involving only the data bits, and take tbgpected valyeover the random choice of the key, of the
absolute value of the bias of this approximation. We are leaving this for future research.

Organization. Below we only discuss linear approximations of the keyed transformation of
MARS. The rest of this section is organized as follows: We start by discussing the linear ap-
proximations of the operations used in the E-function, and then analyze linear approximations of
the E-function itself. Then, we use this analysis to provide a conservative bound on the bias of
every linear approximation of the keyed transformation.

4.1.1 Linear approximation of the basic operations

The basic operations used in the E-function are addition moddlp+; 9-to-32-bit table look-up
(S]); exclusive-or(); multiplication modulo 32 (x); and also data rotation by fixed and varying
amounts(«<). Below we briefly discuss some properties of the linear approximations of these
operations.

Exclusive-or. The exclusive-or operationys = wy & Wy (with inputswy, W, and outputws), is
approximated byX; owy) & (Xz0W,) & (Xzows). This approximation has biag2if X = X, = X,
and it has zero bias otherwise.

Addition. The addition operationyz = wy + Wy (inputswy, W», outputws), can be viewed as
w3 = Wp &5 Wy &5 ¢ Wherec is the carry-bit pattern. The following probabilities are useful in com-
puting the bias of any particular approximation for this operation (belaenotes the carry into
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bit positioni):

1 1 .
1

1 . . .
Pr[ci:l|ci—j:1]:§‘|—ﬁ, fOrI:O...31, j=1...1

Givenci_j, ¢ is independent ofi_;_1...Cy
The following facts are also useful:
Assertion 1

e The LSB-approximation g¥= X, = X3 = 0311) is the only approximation fo# with bias
1/2.

e The parity-approximation (X= X, = X3 = 13?) has bias2~’,

e A necessary (but not sufficient) condition for the approximatar wy ) & (X ows) & (X0
w3) to have nonzero bias, is that the most significant bitsiyXX, X3 is in the same position.

o If the Hamming-weight of eitherXX, or X3 is h, then the bias of the approximati¢X o
W1) @ (X2 0 Wo) @ (Xg 0 Wa) is at mos2—1-11/2],

Multiplication.  The multiplication operatiomns = w; x W (inputswy, Wy, Outputwsg) is approx-
imated by(X; owy) & (Xp o W) & (X3 0ws). In MARS, we force the lowest two bits @f, (which

is the key word) to be ‘1’, and so they need not be present in an any approximation. With this re-
striction, the multiplication operation has exactly three approximations with Bsall involving

only the two lowest bits in the inputs and output (and hence usjng 0). These approximations

are

(1) The LSB-approximation{; = X3 = 0311,
(2) The second-bit approximatiok; = 03°11, X3 = 03010, and
(3) The sum of the two lowest bit¥; = 03010, X3 = 03011.

Although we do not have a rigorous analysis of the linear properties, of seems that linear
approximations for the high-order bits in the inputs and output of this operation have only very
small bias.

S-box lookup. This unary operationy, = Slowest 9 bits ofw; | (inputw;, outputws) is approx-
imated by(X; owy) & (X2 0Ws), whereX; is zero everywhere except in the lowest 9 bits. We picked
the S-box so that approximations involving very few bits will have only a small bias. Specifically,
Swas chosen so that any approximation consisting only of one output biX{i-e.0 andX, has

a single ‘1’) has bias of at most/30, each approximation consisting of exactly one input bit and
one output bit has bias of less thaf22, and the parity approximation has bias 2We conjecture

that there are no approximations of the S-box with bias of more thén 2
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Data-dependent rotation. The data-dependent rotation operat@= wy < Wy (inputswy, Wo,
outputws), is approximated vigXy o wy) @ (X2 o Wo) @ (X3 o w3), whereX; is zero everywhere
except in the lowest 5 bits (as only the lowest 5 bitsvphffect this operation). This operation can

be approximated as either a binary or unary operation, depending on whether the rotation amount
is included or excluded from the approximation. Approximations of data-dependent rotation were
investigated by Moriai, Aoki and Ohta in [10], where the following is proven:

Theorem 2 ([10]) For two masks X X3, denote byp(X;,X3) the number of different rotation
amounts n< 32such that % = X; < n.” Then, the approximatiofX; o wy) & (X o Wa) & (Xz o W)
has bias op(X1, Xo)/64 provided that % < 32/p(Xy, X3), and it has zero bias otherwie.

A useful corollary of this assertion provides a connection between the Hamming weighdaf
and the bias of the approximation.

Corollary 3 Let(Xpowy) @ (XooWs) @ (X30ws3) be an approximation of the operatiow wy <
ws. If the Hamming weight of por X3 is in the range[2',2'+1—_ 1] (for some i< 5), thenp(Xz, X3)

is at most2' and thus the bias of the approximation is at n&sP.

Combining rotations with additions. In two of the three output lines of the E-function the
output of the data-dependent rotation is used as input to an addition operation. It is therefore
useful to analyze the linear properties of this combined operation.

Assertion 4 Consider the ternary operationgnw= (wy < Wp) 4+ Wz (inputs W, Wo, W3, output w),

and let Ad:ef(xlowl) B (XooWs) & (Xzowg) & (X4 0Wy) be alinear approximation of this operation.
Then A has bias of at mo&t®.

Reasoning:An approximation as above is obtained by adding the local approximations fat the
and+ operations. Namely, we have= A¢ & A, whereA,, A, are approximations fo&, +,
respectively
def
Ac E' (Xpowr) & (X2 0Ws) & (X 0 W)

A B (X oWe) B (Xg 0 Wg) & (Xg 0 Wa)

wherew, is the internal variable describing the output of the data-dependent-rotation (which is
also an input to the addition). Notice that the same n¥agkappears in both. andA,, since

it must cancel in the global approximatién Denote the Hamming weight of the maXk by h.

Then,

(a) By Corollary 3, if 2< h < 2'*1 (for somei < 5), then the approximatioA has bias of at
most 2/64.

(b) By Assertion 1, the approximatigk, has bias of at mosy- 2712,

Combining these two facts, and using the Pilinp-up lemma, we conclude that the combined bias of
the approximationg\ is at most 2°. O

/It follows that for 32-bit wordsp(X1, X3) must be either zero or a power of two.

8The “mysterious” expressio,; < 32/p(Xy, X3), in whichX; is viewed as the binary representation of an integer,
simply means that the only bit-positionsw in the approximations are the ones which are relevant for the operation.
For the special case thafX;, X3) = 1, this condition means th is zero everywhere except in the lowest 5 bits.
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Figure 7: Labeling of the lines in the E-function.

4.1.2 Linear approximations of the E-function

We now consider approximating teefunction, which is one of the main sources of nonlinearity in
MARS. Figure 7 contains labeling of the internal lines of the E-function which we use below. The
w;’s represent variables which are internal to Eréunction, and are thus created and used only
within theE-function. TheE-function has seven internal operations (other than the fixed rotations):
one-+, two 4's, one x, one S-box lookup and two data-dependent rotations. Table 5 shows the
labeling of the inputs and outputs in each of these operations, and the linear approximation to the
operation.

Operation Input(s) Output | Approximation
o link Wy AL ' (X1 01) @ (Xooky) @ (X3 0 Wy)
x  |in<13k2|R> 10| A T (X401) & (Xs0ko) @ (X0 R)
<  |w,R>5 |M Ag T (X10W1) @ (X130 R) B (Xaa0 M)
S| Wy Wo Aq def (X70Wy) & (Xgowp)
® W2, R>5 | wg As = (Xg 0wy) & (Xa00 R) & (Xa10 W)
& |wsR Wy Ag T (X150 W3) @ (Xeg0 R) B (X170 Wa)
< |wyR L Az % (X1g0Wa) @ (Xr90 R) & (X200 L)

Table 5: Local approximations of the operations in the E-function.
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Local approximations Operations
1 {A]_,Az,Ag,A4,A5,A6,A7} {—|—,<<,X,S'],@,@,<<}
2 {A17A27A47A57A67A7} {—I—,X,S-],@,@,<<}
3 {A17A27A3} {—I_v X7<<}
4 {A17A37A47A57A67A7} {+7<<7q']7@7@7<<}
&) {A17A47A57A67A7} {‘|‘,S'],@,@,<<}
6| {A1,As} {+ <}
7 {As} {x}
8 {A27A47A57A67A7} {qu']v@v@v<<}
9| {A2,A3, A4, A5, As, A7} 1%,<,9],®,6,<}
10 {Az,Ag} {X,<<}
11 {A37A47A57A67A7} {<<7q']7@7@7<<}
12 {A47A57A67A7} {S']7@7@7<<}

Table 6: Global approximations of the E-function.

A global approximation of the E-function is of the form

AZ (X 01)& (X oL) & (X o M) & (Xro R) & (X 0ka) & (X 0 ko) (@)
where at least one of the output magksXw, Xr iS nonzero.

A global approximation to th&-function is devised by selecting a subset of the local approxima-
tionsA; ...Ay and assigning values to the masks in these approximations. We note that the masks
used in different approximations must be related in order to get a useful global approximation of
the E-function. In particular, an approximation is only useful if it does not include the intermedi-
ate valuesy;. However since local approximations to the operations o&ienction necessarily
involve w; values, the occurrences of these values must cancel each other modulo 2. Also, an
approximation is only useful if it has non-zero bias, hence, for example, all the masks which are
adjacent to arp operation must be the same.

Below we say that local approximatidy is included in a global approximation if at least one of
the masks of this approximation is non-zero. Table 6 lists all the useful global approximations of
the E-function, according to which local approximations are included in them. We remark that a
certain subset of the local approximations can give rise to many different global approximations,
depending on the setting of the relevant masks.

Example 1. Consider an approximation of the E-function which only uses local approximations
A1,A; andAg (Line 3 in Table 6). A conceivable way to devise such approximation is to assign
non-zero values only to the masksg, X,, X3, X4, Xg, X9, X190 @and X171 (and possibly also t&s), in

such away thaX, = X; « 13, X3 = Xg andX;g= Xg < 5. Then, the intermediate values on input
line I and output lineR (as well as the intermediate valug) cancels modulo 2, and the resulting
approximation is of the form

(Xzok]_)@(x5ok2)@(xllo M) (5)
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which is a valid global approximation of the E-function. Clearly, such an approximation is only
useful if there is a way to assign values to these masks so that the resulting local approximations
have non-zero bias. In particulaf;op must be zero in all but the lowest five bits, which implies
that Xg is zero in all but the highest five bits. Hence, one must use a linear approximation for the
highest bits of the multiplication output, and such approximations seem to have only a very small
bias. We conjecture that no approximation of the form (5) has bias of more tti&n 2lso,

since the value oM is then added into the data line, to use such an approximation one must also
approximate this last addition operation. Hence, we conjecture that (including the approximation
of the addition) the bias cannot be more thas®

Example 2. Consider an approximation of the E-function which uses local approximakigis, A4, As, Ag, A7
(Line 2 in Table 6). Again, it is conceivable that such an approximation can set values for the in-
volved masks so thag; = X; < 13, X5 @ (X13 < 5) @ (X16 < 10) & (X19 <« 10) = 0, andXz = Xy,

in which case the resulting global approximation is of the form

(Xaoky) & (Xs0ka) & (Xz00L) (6)

A similar global approximation can be obtained from Line 12 in Table 6, except that in that case
we also geX, = X5 = 0. As in the previous example, the problem here too is to assign values to the
masks so as to get an approximation with non-zero bias. This implieXih& zero everywhere
except in the lower five bits, and th&g = X120 = X13 = X14 = X15 = X156 = X17 = X18. One such
approximation is obtained from Line 12 by using the parity approximation for the S-box (i.e.,
X7 = 0%2, Xg = 13?). This approximation has bias of 2, but it interacts very badly with the final
addition of LineL into the data line (as the bias of the parity approximation for addition is only
2-17). In general, in every approximation of the form (6) we must have either of two cases:

1. The masks;3 < 5 andX;g cancel each other everywhere except in the lowest five bits.
Since we must hav; 3z = Xig then it means(;g includes a 5-periodic non-zero 30-bit sub-
word. HenceXyg must also include such a 30-bit sub-word. This, in turn, means that the
bias of the approximation of the final addition cannot be more thahn Also, it means
thatXyq is either £2, or else it is non-periodic. In the first case, the addition approximation
has bias of 217, and in the second case the rotation approximation has bias’of2 any
case, approximating the two operation has bias of at mo'st Finally, we conjecture that
the approximation of the S-box has bias of at most, 20 the total bias of the E-function
approximation is at most2°,

2. The masks<;3 <« 5 andX;g do not cancel each other in the higher bits. In this case the
approximation (6) must use local approximatidqsA, (for the+, x operations). Here we
must haveXz = X7 # 0, and saXz must be zero everywhere except in the lowest 9 bits. This
implies thatX; must be zero everywhere except in the lowest 9 bits, and ¥ipeeX; <« 13
thenX, is zero everywhere except in bit positions.23. Hence we must approximate the
“middle bits” of the multiplication input, and such approximations again seem to have only
a very small bias. Here too we conjecture that the total bias of the E-function approximation
is at most 215,
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I/O values| Largest biag Comments
L 2-15 Example 2 above
M 2-°0 Example 1 above
L M >-20 2-15as in Example 2
’ and 2°® for the < + on LineM
:"LR 8 275 for the< + on LineL
’ and 23 for the S-box
I,L,R
7 2-%for the< + on LineM
M,R 2 ) S
and 2 < for the initial +
L,M,R 6 .
_13 277 for each of the< + on linesL, M
LLM 2 and 23 for the S-box
I,L,M,R
I,M 6 6 :
| MR 2 277 for the< 4 on LineM
I,R 1/2 lower-bits of the multiplication

Table 7: Bias of approximations for the E-function

We note that approximations of the form (5) and (6) are the only approximations of the E-function
(with non zero bias) that include only a single value fréimL, M, R}. The other approximations

of the E-function can be analyzed similarly to these two examples. In Table 7 we list the approx-
imations of the E-function by the subset of the valdked )M, R} which they include. With each
subset, we list our estimate for the highest possible bias which can be obtained with this subset.

Approximating combinations of the basic operations. One way to refine the analysis above is
to approximate several basic operations togethking into account the fact that the inputs to these
operations are not independerftor instance, one may try to combine approximatidgss, Az,
using the fact that a “self rotate” (i.en, = w; < w;) operation has some small bias. We note
however, that in the E-function one has to also take into account the value from approxiAgation
The best approximation of this kind requires the mégkto be periodic with Hamming weight at
least 6, and this approximation has bias at most 2

4.1.3 Linear approximations of the keyed transformation

Below we provide a conservative bound (not a proof), showing that the data complexity of linear
attacks against the keyed transformation phase of MARS excé&ti$2r this estimate we ignore
most of the fine structure of the cipher, and only consider its graph structure. It is likely that
taking into consideration more of the fine structure will improve these bounds considerably. In
the analysis it will be convenient to consider four consecutive rounds at a time. We refer to four
consecutive rounds as a “super-round” of the keyed transformation. Namely, in this terminology
the keyed transformation consists of four super-rounds, each consisting of four rounds.
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Figure 8: Labeling of the lines in the keyed transformatiordenotes exclusive-or afig denotes
addition.

The graph structure of the keyed transformation. The graph structure of one super-round is
depicted in Figure 8. In the analysis we use a labeling of the lines of the keyed transformation,
and this labeling is also given in Figure 8. Within each super-round, each data line consists of four
segments (where a segment represents the value of this data line between two operations). The
four segments of the first line are denotedAdy. . . A4, those of the second line IB1. . . B4, etc.

The graph structure of the keyed transformation consists of four copies of this super-round graph.
In the last two copies, outpuksandR of every E-function are swapped (so, for example, LAge

is added to Lind>1 and LineA8 is xored into LineB1). In the description below, we refer to lines

in the different super-rounds using subscripts. For example, the input to the second E-function
in the first super-round will be denotd®b,, and the value of the fourth data line at the end of
the last super-round will be denot@&#l,. With this notation, the four input words to the keyed
transformation are denotddl . . . D4g and the four output words afel,...D4,.

A little more formally, we have a graftwhose vertices are the various operations in the keyed
transformation (inputs, outputs, copy operations, additions, xors and E-functions), and with edges
that are labeled by

{Ado, B4o,Cdo, Do} U {Aij, Bij,Cij,Dij : 1<i<8 1<) <4}

In the analysis we consider global approximations for the keyed transformation phase which con-
sist of local approximations for the various operations. Such approximations correspond in a natu-

9For the analysis below it is convenient to ignore the edge directions and think of the graph as undirected.
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ral way to subsets of the edges in the graph above: A global approximation corresponds to the set
of all edges whose values are used in its local approximations (where we say that the value of an
edge is used in an approximation if the mask of this line in non Z&ro).

Clearly, not every subset of edges correspond to an approximation with non-zero bias. For exam-
ple, any approximation which contains the edlg must also contain the edgé8;, A2; (since
approximations which only consider one or two of the three values incident to an exclusive-or al-
ways have zero bias). Also, we are only interested in approximations which contain at least one
input value and at least one output value. Hence we have the following definition:

Definition 5 We say that a subset S of the edgesig], if it satisfies the following:

1. S contains at least one input edge (eithdg B4y, C4y or D4g) and at least one output edge
(either Ay, B4,,C4,4 Or D44).

2. If S contains an edge which is incident to an xor or an addition operation, then it also
contains the other two edges incident to this operation.

3. If S contains an edge which is incident to a copy operation, then it contains at least one of
the other two edges incident to this operation.

(Notice that it may contain both. For example, an approximation which uses two bits from
B1 can approximate one of them using a bit i& &d the other using a bit in1B)

4. If S contains either input edge | or output edge R of an E-function, then it contains at least
one other edge incident to this E-function.

To devise a bound, we identify with each approximation a valid set of edges, and then consider
the edges incident to the E-functions in this set and use Table 7 to bound the bias of this approxi-
mation. In particular, we consider the eddeandM of the E-functions in the graph (these edges
correspond to approximations of the combination of rotation followed by addition). We call these
edges theotation edgesWe argue the following:

Assertion 6 For any approximation A of the keyed transformation phase, the bias of A, as com-
puted from the Piling-up lemma, is at m@st°®.

Reasoning:Let Sbe the valid subset of edges corresponding to the approximatidre consider
two cases:

1. For each E-function in the graph structure of MARSS;ontains either zero or at least two
edges incident to this E-function. A search of the graph structure of the keyed transformation
verifies that in this casBmust contain at least three rotation edges in every super-round, and
that at least one of these rotation edges must de@age. From Table 7 we see that every
occurrence of aiM edge has bias at most2and every occurrence of dnedge has bias at
most 2-8. Using the Piling-up lemma, the bias of approximating one super-round is at most
2-18 and the bias of approximating the keyed transformation is at mé$t 2

100f course, there are many different approximations which correspond to the same subset of the edges, depending
on the actual values of the masks.
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2. There are E-function for whicB contains a single edge. From Table 7 it follows that the
corresponding local approximations must be of the form (6) or (5), which have bias of only
2-150r 2720, respectively. Moreover, a search of the graph structure of the keyed transfor-
mation verifies each E-function like this only “saves” at most one occurrence of a rotation
edge, hence the resulting bias is even smaller th&f 2

4.2 Differential analysis

One of the main considerations in the design of the E-function was to combine the data-key mul-
tiplication, S-box lookup and data-dependent rotations so as to maximize the resistance to differ-
ential attacks. Below we start by analyzing the differential behavior of the data-key multiplication
operation, then use this to analyze the differential behavior of the E-function, and then provide
analysis for the entire keyed transformation phase of MARS. Finally, we also provide some analy-
sis of the differential properties of the mixing phase.

4.2.1 Analysis of the data-key multiplication

Conventions. In the description below we view 32-bit words as integers between 0 #nd 2
All the arithmetic operations are considered modult Ve identify positive integers with their
binary representation. W is a word, then we denote by, ; the sub-word consisting of the bits in
positions throughj in w.

Assertion 7 (data-key multiplication) Let d # d’ be two fixed 32-bit data words such that the
lowest bit in which dd’ differ is in position i. Assume without loss of generality that-dd and
denote d— d = st10, where t is a single bit and s is(80— i)-bit word.

Let k be a 32-bit key word, which is chosen at random subject to the constraint that its two lowest
bits are set to one. Then the difference in the product is of the form

Ap=(d'-k)—(d-k) = utl0

wheret is the complement of the bit t, and u ranges uniformly over all posé&file i)-bit words.

Proof: We can writed' —d = 2' +t2'+1 4+ $2'+2 and alsok = 3+ 4x, wherex is a uniformly
distributed 30-bit integer. Then we have

(d-K)—(d-k) = (2+t2+14+2+2). (1424 4x)
= 2\ 4 2FN(14t) + 272(t 4+ 3s+ (14 2t + 49)x)

and the proof follows sincgt are fixed and is random. |

Corollary 8 Letd+ d' be two fixed 32-bit data words such that the lowest bit in whicti differ
is in position i, and let k be a 32-bit key word, which is chosen at random subject to the constraint
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that its two lowest bits are set to one. Also, lghlbe two indices such thatHi2 <| < m< 3],
and denote i= m— | + 1. Then for every n-bit word s, we get

Pr(d-K)m 1 —(d-Kim 1 =5 (mod 2)] <27

Proof: This follows immediately from Assertion 7, since the expressidn k)py, | — (d - K)m |
always equal eithgfd’ - k) — (d - k)] or [(d' -K) — (d- k) + 1], | (depending on the carry into the
I’th bit position). [ |

Corollary 9 Letd+# d' be any two fixed 32-bit data words, and denote by i the least significant bit
in which d d’ differ. Then

279 ifi €{0...20}

Pri(k-d)s1 22=(k-d')a1 2 < 278 ifi=21
k 0 ifie{22..31}

where the probability is taken over the choice of k as a 32-bit word with the two least significant
bits set to 1.

Corollary 9 explains the usage of the top ten bits of the product as the source-bits for the data-
dependent rotation: If we feed two different data words into the data-key multiplication, then with
probability of at least1 — 2~8) (taken over the choice of the key) the top ten bits will not agree, in
which case we get rotations by different amounts in the E-function.

Xor-differences. The behavior of the data-key multiplication with respect to xor-differences is
more involved than its behavior with respect to subtraction. Still, we can prove the following
bound:

Assertion 10 Let d+ d’ be two fixed 32-bit data words such that the lowest bit in whic differ

is in position i, and let k be a 32-bit key word, which is chosen at random subject to the constraint
that its two lowest bits are set to one. Also, lghlbe two indices such thatHi2 <| < m< 3],

and denote i= m— | + 1. Then for every n-bit word s, we get

'T(r[(d' K)m 1 @ (d-K)m | =5 < 2M9-n+l

where ws) is the Hamming weight of siot including the most significant bie.g., w10110 =
w(00110 = 2).

Proof: The proof follows from Corollary 8 since there are on§2wordss such tha(d’ - k), | —
(d-K)m) =9 (mod2) is consistent wit{d' - k), | @ (d-K)m | =S The reason that we do not
count the most significant bit is that2* and—2"-1 are equal modulo™ [

Assertion 10 gives a good bound on the probability of output xor-differences which has very few
1's, but it only gives an upper bound of a 1 on differences which are all 1's. To some extent, this is
the best bound possible, since tbe 1,d' = —1 we getAp = Ad with probability 1. Although we

still do not have a comprehensive analysis for the differential behavior of the multiplication with
respect to xor-differences, below we provide partial analysis for some special cases.
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Case 1.The data wordsl,d’ differ in the least significant bit. Here we show that as the key
varies, the 30 higher bits in the output difference assume every 30-bit value exactly once.
For this, we prove that once the bis ; .. .kg are fixed, varying the bi; varies biti in the
output difference without affecting any of the lower bits in the difference: Fixiits. . . ko
to any value, and denote= ki_;...kg andp = kd, p’ = kd'. Consider now what happens
when we vary the value d§. If we setk; = 0 thenp, p’ will not change, and therefore hit
in the output difference will remaip; @ pi. On the other hand, if we s&t= 1 then we add
d,d’ (shifted byi) to p, p’ respectively, as shown below.

P3oti -~ Pi Pic1 .-~ Po Paori -~ P Pio1 - Po
+ d3; d3g ... dg O ... 0 —I—d’31 dl30 d(’) 0 ... 0
Since we only add zeros to positions 1...0, then nothing changes in these positions.

In positioni, however, we addl, dj, respectively, and sinody # dj, then output bit is
necessarily flipped.

Case 2. dis even and\ = xx*...10. In this casal’ is also even, so we can apply the analysis
above to the 31-bit integexd/2,d’/2 (which differ in the I.s.b.). Hence we get the same
result as above for the high 29 bits of the input difference. Similar analysis can be used
whend is a multiple of 2 andA is of the formA = xx...10

Case 3. dsodd and\ = 1210. Inthis caseq! = d& A= —d and sckd = —kd = kd& A. Similarly,
whend is odd andA = 01390, we getd’ = 231 —d and sokd’' = 231 — kd = kd ¢ A.

We extended the above analysis using experimental results. In our experiments we worked with
word sizes up to 14 bits. In each experiment we fixed the input xor difference, and then went over
all possible keys and all possible data pairs with this xor difference, measuring the probabilities of
the various output differences. These experiments suggest the following behavior:

e When the input difference is of the forfid = x01'0 with |x| = n (i.e. the I.s.b. is 0, then
some 1's, then a 0, and thendon’t-cares), the most likely output differences are all the
differences of the formAp = u01'0, whereu ranges over all possiblebit values. Each of
these output difference has probability 0f"21 (so their total probability is A2).

Notice that for 32-bit words and= 30, this matches exactly the analysis in Case 3 above,
since wherd is odd (which happens with probability 2), we getAp = Ad with probability
1.

e As we add more zeros in the low-order bits of the input differekaave get similar patterns
with probabilities that are close (but not equal) to a factor 4 fior each additional zero.
Namely, when the input difference is of the fokd = x01'0/ with |x| = n, the most likely
output differences are all the differences of the f&m= u01'0!, and each one occurs with
probability close to (but slightly larger thany 1.

This pattern is only maintained as long iaghe number of 1's, is “large enough”. As
decreases, the deviations from this pattern increase. In our experiments with 14-bit words,
asi decreased below 7 or 8, the pattern itself disappeared and we could not recognize any
pattern in the output differences.
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A comment about the key words. Inthe analysis above we assumed that the key word is chosen
uniformly at random with the lowest two bits set to one. In fact, in the key generation process we
also impose the condition that the key word does not contain ten consecutive 0's or 1's. The effects
of this condition on our analysis are as follows.

¢ This condition ensures that a single-bit difference in the input to multiplicativays causes
some difference in the top ten bakthe output. Hence, we are guaranteed that if we have a
single-bit difference in the input to the E-function, we get a different rotation amount on at
least one of the output lines.

¢ Recall that in the key expansion process, the probability of any 20-bit pattern grows by at
most a factor of 1.23, and for 10-bit patterns the factor is about 1.06. Since our analysis
depends only on short patterns in the product, the probabilities which were calculated above
cannot grow more than by a factor of 1.06 (or 1.23). In the rest of the analysis we ignore
these small factors.

Key probability vs. data-probability. The analysis above assumes that the data words are fixed
and the key is chosen at random (subject to the given constraints). In a differential attack, however,
it is the key that is fixed and the data words are chosen at random (with a fixed difference pattern).
We therefore would like to say something about the probability of a certain pair of input and output
differences, when the key is fixed and the probability is taken over the data.

For the subtraction differencA,= d — d', once the kek and the input differenca;, are fixed, this
completely determines the output differenfig,; = kA, with probability 1. For the xor difference

A =d@d this is not the case. Assuming that the lowest ‘1Ajpis not in the top ten bits (which

is the interesting case for MARS), there are only two pairs of input and output xor-differences with
probability 1/2 for a fixed key (specificallpout = Ain = 1320 andAout = A, = 01390). All the other

pairs have probability of M4 or less. It also seems that the probability of a pair further decreases
when eithe®doyt Or Aj, contains more 0's, although we still do not have a rigorous analysis of this
behavior.

4.2.2 Analysis of the E-function

We analyze the behavior of the E-function with respect to xor differences. The structure of the E-
function is depicted again in Figure 9. In this figure we also label the lines, so that in the analysis
below we can refer to the differences on specific lines. There are three cases to consider, depending
on the position of the lowest ‘1’ in the input difference of the multiplication:

1. Iflowest ‘1’ in the input difference to the data-key multiplicatidn £) is in positions 3122,
then we are guaranteed to get a different rotation amount on at least one of the rotation lines
(L or M). Even in this case, we may get a characteristic with non-trivial probability if we
assume that the actual values in the E-function after the key addition are periodic.

Specifically, assume that the input difference to the E-functids,is- 1 <« 18. Hence, after
rotating it by 13 the input difference to the multiplicatiomg; = 1 « 31, and so the output
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AB@T Ar—5H<<< 5<<< —A—= 0ut3
13<<< k' (odd)

N —A; %ﬂ A <<< Ay— Out2
‘
G| Aaw b & —<<< A~ outl

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 9: Another labeling of the lines in the E-function

difference is alsd\, = 1 < 31. Therefore there is a difference of 16 in the rotation amount
on LineM between the two invocations of the E-function.

With probability 1/2, the difference after the key addition is sifiigg= 1 « 18. With
additional probability 21°, one of the two actual values is 16-periodic (and the other is 16-
periodic except for the bit in position 18). It is easy to verify that if this happens, then the
output differences of the E-function will ldg; = 1 <« 9, Ay = 1 < rp andA; = 100001« ry

for random rotation amounts, r,. This characteristic is shown in the first column of Table 8.

We remark that although in principle one can also consider values with smaller periods, the
probability of those is so small that the characteristics obtained this way are irrelevant (for
example, the probability of obtaining an 8-periodic valueig¥.

2. If lowest ‘1" in A3 is in positions 2113, then there is a difference in the low 9 bits of the
input difference)j,, so there must be a difference in the input to the S-box. Also, recall that
if Aj, has just a single ‘1’ that we are guaranteed to get different rotation amounts. Hence,
we assume that it contains at least two ‘1's, which means that any specific pattern can go
through the key addition with probability at most4l Below we denote the difference after
the key addition by\yqqand the S-box difference @yspox

If we denote the input difference to the multiplication &y = t0'2 wheret = t'10, then

the product difference will bA, = $..$10+ where thg18—i)-bit string $.$ is distributed

by the differential behavior of the multiplication operation. In particular, with probability of
at least 1- 2-8 the top ten bits will not be all zero, and then we will have different rotation
amounts on at least one of the linegv.

With probability < 27°, the top ten bits will be all zero, namely, = 019103 (wheres

is of length 8- i and it is distributed by the differential behavior of the multiplication opera-
tion). If this happens, then the output differences wille= s10'3t, Ay = Aggq< 12 and

AL = (Dspox® Ar P (AR < 5)) < rp for random rotation amounts, rp. This characteristic

is shown in the second column of Table 8.
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3. If the lowest ‘1’ inA;3 is in positions 120, then we denotd;, = vwu A3 = wuv with
Iv| = 13,|w| = 10,|u] = 9. The case where # 0 is similar to the previous case (except
that the probabilities are lower). In the case where 0, the product difference will be
Ap = $..$10 wherei is the position of the lowest ‘1’ iv and the(31— i)-bit string $.$ is
distributed by the differential behavior of the multiplication operation. With probability of
at least 1- 2~° the top ten bits are not all zero, and then we have different rotation amounts
on at least one of the linds M. With probability< 272, the top ten bits are all zero, namely
Ap = 01910 =, wheres is of length 21-i > 9 and it is distributed by the differential
behavior of the multiplication operation.

Since the lowest 9 bits oA, are zero, then there is no difference in the input to the S-
box. Since we assume tha§, contains at least two ‘1’s, then any specific pattern can go
through the key addition with probability at most4l The differences in the output of the
E-function is thereforég = s10'%, Ay = Agqg < 2 andAL = (AR @ (Ar > 5)) < rq for
random rotation amounts, r,. This characteristic is shown in the third column of Table 8.

Key probability vs. data-probability. The probabilities quoted in Table 8 are taken over the
random choice of both the key and the data. It is also useful to know how this probability can be
broken to key vs. data probability, since in general it is the data-probability that corresponds to the
data-complexity of an attack.

In the table we list our estimate for the largest possible data-probability, and the corresponding key-
probability. For example, in the third column we list key probability of 2and data probability

of 272, This means that there may be a property of keys that holds with probabilftys2ch

that if the key has this property then one out of four data pairs satisfies the characteristic in this
column. However, there is no property of keys (with any probability) that causes a larger fraction
of the data pairs to satisfy this characteristic. We also note that the random rotation amounts are
completely data-dependent. Namely, for any fixed key and fixed input difference, when you vary
the data pairs, the rotation amounts vary uniformly between 0 and 31.

4.2.3 Analysis of the keyed transformation phase

Using the results in Table 8 we now proceed to analyze the differential behavior of the keyed
transformation phase. We first describe a few attempts to devise high-probability characteristics of
the keyed transformation. Then we use the intuition gained in these attempts to make a heuristic
argument suggesting that there are no high-probability characteristics, and finally we devise a
crude bound on the probability of any characteristic. As with linear analysis, here too we consider
“super-rounds” consisting of four consecutive rounds of the keyed transformation.

Active and passive rounds. Since the characteristics of the E-function have rather low proba-
bilities (at most 2°, with two random rotation amounts and a few random carry bits), we would
like to have as few rounds with non-zero input difference as possible. Below we say that a round
is activeif it has non-zero input difference, andgassiveotherwise. Since every active round pro-
duces three non-zero output differences, it is not possible to maintain a characteristic with only one
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Type-1 Type-2 Type-3
0B3wu wo°
A = 1«18
" (Iw| =10, |u[=9) (Iv[=13 [w] = 10)
where Ajn has at least two ‘1's| Ay, has at least two ‘1's
u=u10 v=V10
- 2716 278 279
Probability (key: 1, data: 2% | (key: 26, data:22?) | (key:2 ', data: 2?)
Dadd= Ain similar toAj, similar to Ay,
Agpox= 0 S[Aadd|8..0] 0
A3 = 1«31 uwo®3 wO%v
Dp = 1< 31 0T0s10%3+ 010510
AR = 1<9 s1073H! 100
Ay = Aadd < 11 Aadd < 11 Aagg < 1
A = 100001« r Bebox D OR ) (Ar® (AR > 5)) < 1
L 2 ©(Ag > 5) 2 RD (AR 2
| Comments| inputis periodic | difference in the S-box| most probable pattern|

r,ro —random and independent rotation amounss; a random word

Table 8: The differential behavior of the E-function

active round per super-round. In the attempts below we therefore try to maintain characteristics
with two active rounds per super-round.

First attempt: two adjacent active rounds. In the first attempt we try to maintain the invariant

that only the first two rounds in each super-round are active. We try this using a Type-3 character-
istic of the E-function (third column in Table 8). This attempt is depicted in Figure 10. Assume
that the input difference to the keyed transformation phage,is, 0,0), wherea = vw0° with

lv| = 13, |w| = 10, andb is an arbitrary input difference. The characteristic proceeds as follows:

1. The input difference to the first E-function & which matches the Type-3 characteristic
in the third column of Table 8 (wherie which is the bit-position of the lowest ‘1’ im, is
probably no more than one or two). With probability at mos? 2ve get characteristic of
Type-3. Namely, the output difference on LiRes x = s00, the difference on LinéM is
y =~ a < rp for a random rotation amoums (but probablyy +# a < ro because of the carry
bits in the key addition), and the difference on Lin&s z= x& (x < 5)) « r1 for a random
rotation amount;.

Also, the difference on Lind after the first round is < 13= w0°v.
2. With some probability (denoteg) the lowest 9 bits of the differenceon LineL cancel the

low 9 bits of the differencd on Line B. Hence, the input difference into the next round
becomes’ = vw 0° with |V/| = 13, |w/| = 10.
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low 9 bits cancel Type-3 characteristic _
d=0 c=0 o b | a=vw0..0
-'\\H” Z=(X@(x<<H))<<rl .y
y~(a<<r2) Eh Lj .
00 B 4 e
: b'=v'w’0..0 a =w0..0v
Z'=(X'g (X' <<5))<<r3
y'~(b' <<r4) R vy
N N  HE13«< x'=s0..0 e
*_Probability r: \Probability q: - =0
“xandy’ cancel yandz cancel ' o)
| Lower 0’'sin x’ cannot
|

Figure 10: First attempt to devise a characteristic of the keyed transformation.

3. With another 2° probability we again have a Type-3 characteristic: the output difference on

Line Ris X = 5019, the difference on Lind isy ~ b’ < r, for a random rotation amount
r4, and the difference on Lineis Z = X ¢ (X <« 5)) < r3 for a random rotation amoun.

4. With some small probability, the differencgandZ cancel each other, and the differenges
and~ Yy also cancel each other.

However, even if this happens, the output differexiam LineR of the second E-function has
ten or more ‘0’s in the lowest bits, and so it cannot cancel the low bits of the diffevedfve

on LineA. Hence, some of the low nine bits A&remain non-zero, and so this characteristic
cannot be maintained. (Of course, we could make the assumption that the low Matgin
also ‘0, but then we could not maintain these bits as ‘0’s).

One problem with the above attempt is that the difference orRtbatput line will always have

the lowest ten bits set to zero (or else there will be a different rotation amount on one of the other
lines), and hence it cannot be used to counter the effect of the fixed rotation by 13 on the source
line. Hence, in the attempts below we try to maintain characteristics in which the active rounds are

not adjacent (e.g., linesandC).

Second attempt: Using a Type-1 characteristic of the E-function. In the next attempt we try

and keep active only the first and third rounds in each super-round, this time using a Type-1 charac-
teristic of the E-function (i.e., relying on periodic inputs). Assume that the input difference to the

keyed transformation phase(is b, 0,0), wherea = 1 <« 18 andb = 100001. The characteristic is
depicted in Figure 11 and it proceeds as follows:

1. With probability 216 we get a Type-1 characteristic, which means that the output difference

on LineRis 1« 9, the output difference on Lind is 1 <« r, and the output difference on
Line L is 100001« rq, whererq,r, are random rotation amounts.
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e

Probability 2°: Probability 2°: Probability 2'° for a
r2=18 b and z cancel isti
. C S B Type-1 characterlst‘lc A
|
R R _ a=1<<18
d=0 . c=0 . b=100001 |
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Figure 11: Second attempt to devise a characteristic of the keyed transformation.

The difference on Lin& after the first round is ¥ 31.

2. With probability 2> we haver; = 0, so the differences on linésandB cancel each other
(assuming the carry bits behave correctly), and the second round becomes passive.

3. With probability 2-° we haver, = 18, and then the input difference to the third round again
matches the Type-1 characteristic of the E-function.

4. With probability 216 we again get a Type-1 characteristic, so the output difference on Line
Ris 1« 9, the output difference on Lind is 1 <« r4 and the output difference on Lirneis
100001« r3, wherers, r4 are random rotation amounts.

However, the differences on lin€sof the first round (k« 9) and LineL of the third round
(100001« r3) cannot cancel each other, so the fourth round must also be active. Similarly,
the differences on line& (1 « 31) and LineM of the third round (X« r4) cannot be com-
bined to yield 1« 18, which is what needed for a Type-1 characteristic of the E-function.

This attempt demonstrates the difficulty of working with the Type-1 characteristic of the E-function:
not only does this characteristic have low probability'®, itis also very fragile in that it requires
that the input difference contains a single ‘1’ in a fixed location. This does not fare well with the
fixed rotation on the data lines.

Third attempt: Type-3 characteristics in non-adjacent rounds. Below we try to keep only

the first and third rounds active, but with the Type-3 characteristic of the E-function. Assume
that the input difference to the keyed transformation phage,is, c,0), wherea = vw0° with

V| = 13,|w| = 10,b = t0%° (with |t| = 22), andc = W 0% with |V'| = 13, |W/| = 10 (cis essentially

a rotated version af). The characteristic, depicted in Figure 12, proceeds as follows:
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Figure 12: First attempt to devise a characteristic of the keyed transformation.

1. The input difference on Lin& matches the Type-3 characteristic in the third column of
Table 8 (whera, which is the bit-position of the lowest ‘1’ im, is probably no more than
one or two).

With probability at most 2° we get a Type-3 characteristic of the E-function: the output
difference on LineR is x = 019, the difference on LinéM is y ~ a < r, for a random
rotation amount,, and the difference on Link is z= x® (x < 5)) <« r1 for a random
rotation amount;.

Also, the difference on Lind after the first round ia < 13 = w0°v.

. With some small probability (denotga) the differencey andb cancel each other. We note
thaty contains at least 5 consecutive zeros hrobntains at least ten consecutive zeros, so
we can hope to ggi > 2-32, We return to this point later.

If this happens, then the second round becomes passive.

. With some other probability (denotegithe low nine bits irc andy cancel each other. Here
we note that although bothandy are known to have at least nine consecutive ‘0’s, the ‘0O’s
in ¢ are notin the lowest bit positions, so this does not help the cancellation.

If we get a cancellation in the low 9 bits, the input difference to the third round becomes
¢ = Vv'W'0° (with [V'| = 13, |w'| = 10). Notice that now the difference on Lideis w0%,
the difference on Lin® is 0 and the difference on Lin@ is d = t'0'°.

Hence, we are in exactly the same situation as in the beginning of the characteristic and we
can iterate it. We note that the same characteristic (with the same probabilities) works also
for the backwards part of the keyed transformation, so in total we need eight iterations of

this characteristic.

The above is therefore a plausible characteristic for the keyed transformation phase, with probabil-
ity (279 p-)8. However, we note that the same characteristic can beavsaif the E-function is
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replaced by an idea82 — 96 expansion functiorwith probability(2~4%)8, (For an ideal function

we have probability 23! that the value on Lin® cancels and probability? that the lowest nine

bits on LineC cancel). Hence, this characteristic is useful to the cryptanalyst only if we can get
2—9 p-g> 2—40_

To get a large valug (the probability of cancelling the low 9 bits = w 0%/) we can start with
the differences andc havinglow Hamming weightin this case alsg ~ a < r, will have low
Hamming weight, and if the rotation amoumntis correct then we have a pretty good chance of
cancellation. We therefore use the vatpe 2-° in the calculations below.

As for the value ofp, this is the probability that the differencesandb cancel each other. In
general, in this characteristic the differerizes the output difference on tHeline of E-function
in some active round armis the output difference on theline of E-function in some other active
round. Hence in general:

e The difference is of the formt0'°, wheret is determined by the output distribution of the
data-key multiplication.

¢ The difference is of the form(x@ (x < 5)) < r, with x being theR output from this ‘other
active round’ and is a random rotation amount.

So far we still do not have a rigorous analysis of the xor differential behavior of the data-key
multiplication output, and so we cannot devise a rigorous boung.fdnstead, below we give a
very informal argument that it is unlikely to ggt> 216, First, since the low ten bits df are
zeros, there is likely to be at most a single rotation amouhat causeb andy to cancel. Then,
sinceb, x each contains about 22 non-zero bits, we estimate by at maésti2e probability that
these bits are chosen in such a way so thahd (x& (X < 5)) < r actually cancel. Hence, we
conjecture thap < 216,

With these values fop, g, we have 2°- p-q= 2730 which is only slightly better than the 2°
we get for an ideal function. The probability of the characteristic on the full keyed transformation
phase is therefore about %8 = 2-240

Can we do better? Below we give very informal arguments to the effect that the above charac-
teristic is the best possible for MARS. We note the following

¢ To get a high-probability characteristic, one must use as few active rounds as possible. Itis
very unlikely that there exists a characteristic of the keyed transformation phase with less
than two active rounds per super-round.

e Characteristics of the E-function with different rotation amounts on eithelLlioeLine M
have very low probability (except, perhaps, the Type-1 characteristic from Table 8). Hence it
is unlikely that one can devise a high-probability characteristic of the keyed transformation
using such characteristics of the E-function.

Regarding the Type-1 characteristic in Table 8, it requires exactly one ‘1’ in a particular
position in the input difference. As was demonstrated by the second attempt from above, this
cannot be maintained in the face of the fixed rotation amounts on the data lines in MARS.
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e Itis also unlikely that one can devise a high-probability characteristic including a difference
in the S-box input and output (such as the Type-2 characteristic in Table 8), since the S-box
output differences in general do not match any of the input differences in Table 8.

e Hence it seems that one must use the Type-3 characteristic of the E-function as the main
building block for a characteristic of the keyed transformation.

¢ To maintain only two active rounds per super-round, one must arrange the outputs of the E-
function in different rounds in pairs, so that in half of these pairs the two outputs completely
cancel each other (with high probability) and in the other half the low 9 bits are cancelled.

As was demonstrated in the first attempt above, it is not possible to have two adjacent rounds
as the only active rounds in a super-round. This is becausedh#put line of the E-function
cannot be used to cancel the low nine bits of another line (as its lowest ten bits are ‘0’).

Hence, one must have tReandL lines cancel each other, and tkdine cancel the low nine
bits in the input line (after the rotation by 13). As was demonstrated in the last attempt from
above, this leads to a characteristic with probabiitg—24°.

Although the arguments above are quite speculative, we expect that the conclusion is still correct.
Hence we estimate the security level of the keyed transformation phase against differential analysis
to be at least 2. We comment that the data complexity which is associated with the above “best
characteristic” is at least'2?, and its key probability is at most32C.

Devising a bound. Below we also provide a crude and much more conservative bound for the
keyed transformation phase. For this bound we make only very weak assumptions on the way that
characteristics of the E-function can be combined to construct a characteristic of the entire phase.
Specifically, we assume that

1. Every characteristic of the keyed transformation uses at least two active rounds per super-
round.

2. Every active E-function contributes a facto2-12 to the differential probability (taken over
both data and keys). This is because the highest-probability characteristic of the E-function
has probability 2°, and each round contains three addition operations, each contributing (at
least) one more factor of/2.

3. Among the four random rotation amounts in each super-round, two must be fixed to specific
amounts and the other two must be aligned. This contributes another facto®doReach
super-round.

With these assumptions, we get a bound ot%®. 2-154 = 2-156 g the probability of every

characteristic of the keyed transformation. This bound implies data complexity of at €astd
key probability of at most 276,

4.2.4 Analysis of the mixing phases

The purpose of the mixing phases in MARS is twofold:
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e They provide better avalanche of the key bits than the keyed transformation, in the sense
that stripping off mixing rounds requires guessing more effective key bits than stripping off
rounds from the core.

e They are likely to break “input structures” that may be used in conjunction with the dif-
ferential characteristics of the keyed transformation. For example, the differential analysis
above suggests that input differences of small Hamming weight are useful in constructing
characteristics of the keyed transformation. Therefore a potential attack may proceed by
encrypting many plaintext blocks which lie in a Hamming sphere of small radius. Such a
sphere of words produce$)) input pairs of small Hamming weight. This fact may be used
to considerably reduce the data complexity of a differential attack.

However, the mixing phases, being built out of S-boxes, make it harder to propagate such
structures to the keyed transformation.

To gain some intuition into the structure of the mixing phase (and to explain some of the choices
made in the design), we illustrate below two “sample attacks”, on weakened versions of the mixing
phase. To make the description of these attacks simpler, we consider a version of the mixing
phase in which all the additions are replaced by xors (although similar attacks with slightly lower
probabilities can also be devised against versions which include additions).

The role of the feedback additions. Recall that in the mixing phases we add one of the target
words back into the source word after some of the mixing round. To demonstrate the importance
of these “feedback additions” we describe below a simple attack against a version of the mixing
phase which does not have these additions.

Let Ap = SO[i] & N[ j] be a difference of the S-bd which matches the Type-3 characteristic of
the E-function (third column in Table 8) and has minimum Hamming weight, and dénofeb |
andA; = Sli] @ S1[j]. The attack, described in Figure 13, proceeds as follows:

1. We feed differences of 0 in LingsandB, differencef; in Line D, and on LineC we feed
differences of 0 in Bytes 0,2,3, and differericm Byte 1.

2. The difference is fed to the S-bo)Sl in the third round. With probability 2 the output
difference isA;, and this cancels with the difference on LiDe leaving a difference of O.
Also, since the source word is rotated by 24 positions to the right, the difference o€ Line
iS now in Byte 2.

3. The difference is now fed to the S-bof0 in the seventh round. With another probability
2-8 the output difference iAg. Line C is rotated again, so the difference is now in Byte 3.

4. Therefore, with probability of 218, the output difference on Lin& s Ay, the difference on
LinesB andD is 0 and the difference on Lin@is 0 in Bytes 0,1,2, and in Byte 3.

The property which enables the above attack is the following: Consider the 32 S-box lookups
during this phase, and call an S-box lookup “free” if the value which is affected by this lookup was
not used anywhere else thus far. Then, the structure above has free S-box lookups almost until the
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Figure 13: An attack on the mixing phase without the feedback additions.
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Figure 14: An attack on the mixing phase with a weak S-box.
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end of the first super-round (specifically, the 10’th lookup is still free). Hence, one reason for the
feedback additions is to eliminate free lookups as early as possible. Indeed, in the actual structure

of the mixing phase, the 6'th S-box lookup is the last free lookup.

Avoiding weaknesses in the S-box. Even with the feedback additions, one must be careful to
ensure that the mixing phase is not suseptible to attacks due to weaknesses in the S-box. Below we
describe one such potential attack. The following attack also explains why we insist that S-boxes
0 andSl do not include any differences with more than a single zero byte.

The attack is described in Figure 14. Assume that the SShaontains two entries j such that
A, = Sl[i] @ S1[j] is zero in the two highest bytes, and dendte i & j andAg = S0[i] & 0[j]. The

attack pr

oceeds as follows:

1. Setthe input differences on LinBsD to 0O, the difference on Lin€ to Ag and the difference
on LineAto 0 in Bytes 0,1,3 and in Byte 2.

2. With probability 2°8, the output difference from the S-b& in the first round will beAg,
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and this will cancel the difference on Lii® leaving a difference of 0.
Also, the rotation of LinéA leaves the difference in Byte 3.

3. With probability 2°8, the output difference from the S-b&t in the fifth round will be;.
This will cause the difference in Line to beA;, which after the feedback addition will also
modify Line A.

4. In the last round, the difference on Limewill affect the first two S-box lookups, so the
difference on LineA will change again. Also, the rotation of Liri2 will leave the first and
last bytes with difference O.

5. Therefore, with probability 216 the output differences on Lineé® andC are 0, the out-
put difference on LinéA is “random” and the output difference on Lizis of the form
(0,%,%,0). (Notice that in particular, with additional probability 2, the differences on
both LinesA andD have the lowest nine bits set to zero.)

The reason that this attack works is that when we have a difference of just two bytes in the S-box,
it is possible that these two bytes are used for S-box lookups that affect the same data line. Hence,
although the output difference from the S-box is fed back as input difference to the S-boxes, it still
only affects a single data line.

Therefore, in the S-box generation process we made sure that any two en8deSlirdiffer in at
least three of the four bytes. This way, if the output difference from an S-box is used again as input
to the S-boxes, we are guaranteed that at least two data lines are affected.

Expected strength. With the current structure of the mixing phase and the values in the S-box,
we are not aware of any characteristic of the mixing phase which holds with probability of more
than 232, To devise a bound, we note that due to the feedback additions there could be no
characteristic which uses less than two S-box lookups. Adding to that the additional effects of
the carry bits, we claim a bound of 2 on the probability of any characteristic of the mixing
round. Together with our estimate/bound for the keyed transformation, this gives us an estimate
of 2240.220. 220 — 2280 and a bound of ¥6. 220. 220 — 2196 for the security-level of MARS with
respect to differential attacks.

4.3 Otherissues

Weak/equivalentkeys. As far as we know, MARS does not have any weak keys: the key expan-
sion procedure guarantees that the key words which are used for multiplication do not have any
obvious weaknesses (e.g., they are not even), and we are aware of no other source of weak keys.
Because of this, we put no restrictions on the key selection.

Also, in all likelihood MARS does not have any equivalent keys: it is highly unlikely that any
two different 40-word keys have the same behavior, and the key expansion process is “random
enough” so that it is highly unlikely that any two different keys yield the same expanded key array.
To see the last point, notice that in the key expansion routine is completely reversible up to (and
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including) the reordering of the key words. The only operation which may result in collisions is
the “key fixing”, where we ignore the lowest two bits in some of the key words. Recall now that
the expanded key has abodf# effective bits, and so the expected number of pairs of original
n-bit keys that are mapped to the same expanded array is about

2n
( ) /21248, 92—1249
2

Therefore, as long as the original key is less than about 600 bits, it is highly unlikely that any pair

of keys result in the same expanded array. Similar arguments show that it is just as unlikely that
any MARS-key is its own inverse, that two MARS keys are inverses of each other, or that two keys

have complementation properties.

No trapdoors. MARS was designed to be free of trapdoors. To help ensure this, we made the
design of the S-box according to open principles, and once these principles are set, the choice of
S-box was completely deterministic. As far as we know MARS does not have any trapdoors.

Resistance to Visual Cryptanalysis. Recently, Adi Shamir demonstrated that simple photogra-

phy equipment can be used to considerably speed-up an exhaustive key search of some ciphers
[13]. However, he noted that this technique is not efficient against ciphers which rely on data-
dependent rotations (or other operations with boolean complexity). Since MARS relies heavily on
such operations, it is expected that Visual Cryptanalysis is not very useful against MARS.

Timing attacks and Differential fault analysis. With a proper implementation, MARS should

be resilient to timing attacks and differential fault analysis. We note that although in older ma-
chines the multiplication time varies widely between different inputs, our key-expansion routine
eliminates exactly those keys for which multiplication works much faster (i.e., those with many
consecutive 0's or 1's).

Algebraic properties. It is very unlikely that MARS has any algebraic properties. In particular,
it is almost surely not a group.

5 Extensions (2.B.6)

5.1 Increasing the block length

Though MARS was designed for a block length of 128 bits, a similar design can be used also for
larger blocks. Below we discuss some options for extending the current design to support block
length of 256 bits.
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Applying generic constructions. There are a few generic constructions which can be used to
increase the block length of any cipher. For example, one may use the construction of Naor-
Reingold [11], in which a 256-bit block is processed by two invocations of the 128-bit cipher in
ECB mode, wrapped between two layers of invertible universal hashing. We estimate that applying
this technique to MARS, using fast methods for universal hashing (such as the ones in [6]) yields
a cipher with block length of 256 bits that runs in about half the speed of MARS.

Increasing the number of rounds. One way to alter the current design in order to support a
block length of 256 bits, is by keeping the same round functions and increasing the number of
rounds. Namely, instead of working with four 32-bit words we may work with eight 32-bit words,
but still use the same round functions (with one source word and three target words), where in
roundi we useD][i] as the source word aridli + 1], D[i 4+ 2], D[i + 3] as the target words (where the
index arithmetic is done modulo eight). This, of course, forces us to at least double the number of
rounds. More analysis needs to be done to determine if doubling the number of rounds is enough
to get a sufficient level of security.

Working with 64-bitwords.  An alternative approach to increasing the block length is to increase
the word length. Namely, instead of working with four 32-bit words, we may work with four 64-bit
words. This change would have almost no effect on the design of the E-function and the keyed
transformation phase, except that we would have to adjust the fixed rotation amounts. However, it
would require a re-design of the mixing phases, since each word now has 8 bytes rather than 4, so
we need many more S-box lookups.

5.2 Modes of operation

Block ciphers are routinely used as “building blocks” in the design of other cryptographic al-
gorithms, including collision-resistant hash functions, pseudo-random number generators, stream
ciphers, and message authentication codes (MACs). There are standard ways of adapting a block
cipher for these applications, and MARS can be used in any of these ways. The underlying security
of these constructed modes rests on the assumption that the block cipher simulates the behavior
of a random permutation. The good cryptographic properties of MARS ensure that such construc-
tions are strong when the underlying block cipher is instantiated with MARS. Below we briefly
review some of these constructions.

Collision resistant hash functions. In the following we assume a 128-bit block and 128-bit key
cipherE like MARS. We denote the ciphertext block resulting from encryptingith key k by
Ex(X). Before processing, an input strirxgs always padded as necessary to make its length a
multiple of 128 (for example a 1 and then extra 0’s can be addgq ta the following we assume
that the length ok is a multiple of 128, i.ex=x; ...x, where eacl; is a 128-bit block and that we
use some fixed 128-bit block as an initial val¥& Some known constructions of hash functions
include:

MATYAS-MEYER-OSEAS HASH. Define recursivelHp = IV andH; = Ey,_, (%) @& X. The hash
of x is defined a$d (x) = H;,.
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DAVIES-MEYER HASH. Define recursivel{Ho = IV andH; = Ex (H;_1) & H;j_1. The hash ok is
defined asd(x) = H,.

MIYAGUCHI-PRENEEL HASH. Define recursivel{Hp = IV andH; = Ey,_, (X)) © X @ Hi_1. The
hash ofx is defined a$i(x) = H;.

When instantiated with a secure block-cipher such as MARS, the above constructions result in
secure 128-bit collision resistant hash functions (meaning that the best strategy to find a collision,
i.e. two stringx # y such that (x) = H(y) would involve~: 254 operations). If a longer hash code

is desired then one could use the ISO/IEC Standard 10118-2 which results in a hash code whose
length is two ciphertext blocks (e.g. 256 bits in the case of MARS).

In general, block-cipher based hash functions are not as efficient as customized ones (e.g. the
MD X-family). There are several reasons for this, one of them being the need to re-key the algo-
rithm E at each stage. This is true also witers instantiated with MARS. However for MARS the
penalty is limited as the cost of re-keying is bounded by 10 times the cost of encrypting a block.

Pseudo-random number generation. Pseudo-random number generators (PRNGS) are created
out of a block cipheE by running it in various specific modes of operation. In each such nrode,

is a parameter ¥ r < 128 that specifies how many bits should be taken as pseudo-random from
any specific iteration of the block ciphEr Given a 128-bit wordv we denote byv|, the leftmost
r-bits ofw.

COUNTER MODE. In this mode the seed is the kieyand the sequena®, ay, . . . of r-bit numbers
is generated ag = Ei(i)|r.

OuTPUT FEEDBACK MODE. Inthis mode the seed is the kieynd the sequenag, ay, . . . of r-bit
numbers is generated as= E(IV)|r wherelV is a fixed constant (or can be part of the seed), and
E.(1V) denotes the 128-bit word obtained by successively encrypirigimes.

Other methods have been proposed in the literature to generate strong PRNGs from a block cipher
(for example see the method cited in the ANSI Standard X9.31-1998).

Stream Ciphers. A cryptographically strong PRNG automatically yields a good stream cipher:
if a; is theith bit output by the PRNG then one can use it to mask'thait m; of the message stream

by transmittingc; = m; @ g. Thus the above two modes also constitute good implementations of
stream ciphers.

CIPHER FEEDBACK MODE. This mode of operation for a block cipher can be used to implement

a stream cipher (but it's not a PRNG since it uses previous bits derived from the input stream to
modify the subsequent mask bits.) The CFB mode works as follows: define initighylV,

Wo = Ex(X0)|r andcp = mp & Wo wheremy are the firstr bits in the input stream. Then define
recursivelyx, = (X_1/Ci_1)127. 0 (that is, the lowest 128 bits in the concatenatiom;of andc;_1)

andw; = Ey(x)|r andc; = my w;, wherem is theith r-bit block in the input stream. The encrypted
stream iy, Cq, ...
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Message authentication codes (MACSs). Block ciphers are used in two basic ways to generate
MACs.

CBC-MAC. In this mehod, the messaga to be tagged is encrypted in CBC mode using the
block cipherE, but the tag consists only of half of the bits of the last encrypted block. That is, if
m=my...m; wheremy’s are 128-bit blocks, and=c; ...c, is the CBC encryption o usingE

with keyk, thenMAG(m) = ¢;|ga

CARTER-WEGMAN MACS. In this method the kelgis split in two partky, ky. The first subke;

is used to pick a hash functidty, from a universal family and the second is used as a key for the
encryption. (A family of hash functions is universal if the probability of getting a collision for any
two specific pre-images when picking a random function from the family is small.) The message
mis first hashed down by computitig= Hy, (m). The valueh should be of the same length as the
block used by the cipher. Then the tag is computet-a&, (h). Alternatively, the tag for théth
message can be computedcas Ey, (i) @ h.
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A S-box

Below is the S-box we use in the cipher.

WORD Sbox[ ] = {

0x09d0c479, 0x28c8ffe0, 0x84aa6c39, 0x9dad7287, 0x7dff9be3, 0xd4268361,
0xc96dald4, 0x7974cc93, 0x85d0582e, 0x2a4b5705, Oxlcal6a62, Oxc3bd279d,
0x0f1f25e5, 0x5160372f, 0xc695clfh, Ox4d7ffle4, Oxae5f6bf4, 0x0d72ee46,
Oxff23de8a, 0xb1cf8e83, 0xf14902e2, 0x3e981e42, 0x8bf53eb6, 0x7f4bf8ac,
0x83631f83, 0x25970205, 0x76afe784, 0x3a7931d4, 0x4f846450, 0x5c64c3f6,
0x210a5f18, 0xc6986a26, 0x28f4e826, 0x3a60a8lc, 0xd340a664, 0x7ea820c4,
0x526687c5, 0x7edddl2b, 0x32alldld, 0x9c9ef086, 0x80f6e831, Oxab6fO4ad,
0x56fb9b53, 0x8b2e095c, 0xb68556ae, 0xd2250b0d, 0x294a7721, Oxe2lfb253,
0xael36749, 0xe82aae86, 0x93365104, 0x99404a66, 0x78a784dc, Oxb69bad4b,
0x04046793, 0x23db5cle, 0x46caeld6, 0x2fe28134, 0x5a223942, 0x1863cd5b,
0xc190c6e3, 0x07dfb846, 0x6eb88816, 0x2d0dccda, Oxadccae59, 0x3798670d,
Oxcbfa9493, 0x4f481d45, Oxeafc8ca8, 0xdb1129d6, 0xb0449e20, 0x0f5407fb,
0x6167d9a8, 0xd1f45763, 0x4daa96c3, 0x3bec5958, Oxababa0l4, 0xb6ccd201,
0x38d6279f, 0x02682215, 0x8f376cd5, 0x092c237e, 0xbfc56593, 0x32889d2c,
0x854b3e95, 0x05bb9b43, 0x7dcd5dcd, 0xa02e926c, 0xfae527e5, 0x36alc330,
0x3412elae, 0xf257f462, 0x3c4fld71, 0x30a2e809, 0x68e5f551, 0x9c6lba44,
0x5ded0ab8, 0x75ce09c8, 0x9654f93e, 0x698cOcca, 0x243ch3e4, 0x2b062b97,
0x0f3b8d9e, 0x00e050df, 0xfc5d6166, 0xe35f9288, 0xc079550d, 0x0591aees8,
0x8e531e74, 0x75fe3578, 0x2f6d829a, 0xf60b2lae, 0x95e8eb8d, 0x6699486bh,
0x901d7d9b, 0xfd6d6e31, 0x1090acef, 0xe0670dd8, Oxdab2e692, 0Oxcd6d4365,
0xe5393514, 0x3af345f0, 0x6241fc4d, 0x460da3a3, 0x7bcf3729, 0x8bfldleO,
0x14aac070, 0x1587ed55, 0x3afd7d3e, 0xd2f29e01, 0x29a9d1f6, Oxefbl0c53,
0xcf3b870f, 0xb414935c, 0x664465ed, 0x024acac?, 0x59a744cl, 0x1d2936a7,
0xdc580aa6, 0xcf574ca8, 0x040a7al0, 0x6cd81807, 0x8a98bedc, Oxaccea063,
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0xc33e92b5, 0xd1e0e03d, 0xb322517e, 0x2092bd13, 0x386b2c4a, 0x52e8dd58,
0x58656dfb, 0x50820371, 0x41811896, 0xe337ef7e, 0xd39fh119, 0xc97f0df6,
0x68fea0lb, Oxal50a6e5, 0x55258962, Oxeb6ff4lb, Oxd7c9cd7a, Oxa619cd9e,
0xbcf09576, 0x2672c073, 0xf003fb3c, Ox4ab7a50b, 0x1484126a, 0x487badbl,
0xa64fc9c6, 0xf6957d49, 0x38b06a75, 0OxddB805fcd, 0x63d094cf, 0xf51c999e,
Oxl1aa4d343, 0xb8495294, 0xce9f8e99, Oxbffcd770, Oxc7c275cc, 0x378453a7,
0x7b21be33, 0x397f41bd, 0x4e€94d131, 0x92cclf98, 0x5915ea51, 0x99f861b7,
0xc9980a88, 0x1d74fdsf, Oxb0a495f8, 0x614deedO, Oxb5778eea, 0x5941792d,
0xfa90c1f8, 0x33f824b4, 0xc4965372, 0x3ff6d550, Ox4cabfecO, 0x8630e964,
0x5b3fbbd6, 0x7da26a48, 0xb203231a, 0x04297514, 0x2d639306, 0x2eb13149,
0x16a45272, 0x532459a0, 0x8e5f4872, 0xf966¢c7d9, 0x07128dcO, 0x0d44db62,
Oxafc8d52d, 0x06316131, 0xdB838e7ce, 0x1bc41d00, 0x3a2e8cOf, OxeaB83837e,
0xb984737d, 0x13ba4891, 0xc4f8b949, Oxab6db6ach3, Oxa2l5cdce, 0x8359838b,

Ox6bdlaa3l,
0x2b38fd54,
0x623f7863,
0x8d421fcO,
0x4cf5178a,
0xb6fd9676,
0x6b57e354,
0x30738df1,
0x73f9a978,
0x98df93c2,
0xd17b978b,
0xe35b3447,
0x117c83fe,
0x46f5d857,
0x611dfee3,
0x088f8ead,
Oxda44e9ed,
0x7b0dbdc6,
0x010e65c4,
0xbba8366f,
Ox8ceal7dl,
0xfe33384a,
0x419cflad,
0x35f8a74b,

0xf579dd52, 0x21b93f93, 0xf5176781, 0x187dfdde, Oxe94aeb76,
0x431delda, 0xab394825, 0x9ad3048f, Oxdfea32aa, 0x659473e3,
0xf3346¢59, Oxab3ab685, 0x3346a90b, 0x6b56443e, 0xc6de01f8,
0x9b0ed10c, 0x88flale9, 0x54c¢1f029, 0x7dead57b, 0x8d7ba426,
Ox55l1a7cca, 0x1a9a5f08, Oxfcd651b9, 0x25605182, Oxellfc6c3,
0x337b3027, 0Oxb7c8ebl4, 0x9e5fd030,

0xad913cf7, 0x7e16688d, 0x58872a69, Ox2c2fc7df, 0xe389ccch,
0x0824a734, 0xel797a8b, 0xa4a8d57b, 0x5b5d193b, 0xc8a8309b,
0x73398d32, 0x0f59573e, 0xe9df2b03, 0xe8a5b6c8, 0x848d0704,
0x720aldc3, 0x684f259a, 0x943ba848, 0xa6370152, 0x863b5ea3,
0x6d9b58ef, 0x0a700dd4, Oxa73d36bf, 0x8e6a0829, 0x8695bcl4,
0x933ac568, 0x8894b022, 0x2f511c27, Oxddfbcc3c, 0x006662b6,
0x4e12b414, 0Oxc2bca766, 0x3a2fecl0, 0xf4562420, 0x55792e2a,
Oxceda25ce, 0xc3601d3b, 0x6c00ab46, Oxefac9c28, 0xb3c35047,
0x257¢3207, 0xfdd58482, 0x3b14d84f, 0x23bechb64, 0xa075f3a3,
0x07adf158, 0x7796943c, Oxfacabf3dd, 0xc09730cd, 0xf7679969,
0x2c854c12, 0x35935fa3, 0x2f057d9f, 0x690624f8, 0x1chObafd,
0x810f23bb, 0xfa929ala, 0x6d969al7, 0x6742979b, 0x74ac7d05,
0x86a3d963, 0xf907b5a0, 0xd0042bd3, 0x158d7d03, 0x287a8255,
0x096edc33, 0x21916a7b, 0x77b56b86, 0x951622f9, 0xa6c5e650,
Oxcd8c62bc, 0xa3d63433, 0x358a68fd, 0x0f9b9d3c, Oxd6aa295b,
0xc000738e, 0xcd67eb2f, Oxe2eb6dc2, 0x97338b02, 0x06c9f246,
0x2b83c045, 0x3723f18a, 0xcb5b3089, 0x160bead7, 0x5d494656,
Oxl1lede6c9e, 0x000399bhd, 0x67466880, 0xb4174831, Oxacf423b2,

OxcaB815ab3, 0x5a6395e7, 0x302a67c5, 0x8bdb446b, 0x108f8fa4, 0x10223eda,
0x92b8b48b, 0x7f38d0ee, 0xab2701d4, 0x0262d415, 0xaf224a30, 0xb3dB88aba,
0xf8b2c3af, Oxdaf7ef70, 0xcc97d3b7, 0xe9614b6c, O0x2baebff4, 0x70f687cf,
0x386c9156, 0xce092ee5, 0x01e87da6, 0x6ce9leba, Oxbb7bcc84, 0xc7922c20,
0x9d3b71fd, 0x060e41c6, Oxd7590f15, 0x4e03bb47, 0x183c198e, 0x63eeb240,
0x2ddbf49a, 0x6d5cba54, 0x923750af, 0xf9el14236, 0x7838162b, 0x59726c72,
0x81b66760, 0xbb2926c1, 0x48a0celd, 0xa6c0496d, O0xad43507b, 0x718d496a,
0x9dfo57af, 0x44blbde6, 0x054356dc, Oxde7ced35, 0xd51al38b, 0x62088cc9,
0x35830311, 0xc96efca2, 0x686f86ec, 0x8e77ch68, 0x63eld6b8, 0xc80f9778,
0x79c491fd, Ox1b4c67f2, 0x72698d7d, 0x5e368c31, 0xf7d95e2e, 0xald3493f,

60
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0xdcd9433e, 0x896f1552, Ox4bcdca7a, Oxa6dlbaf4, Oxa5a96dcc, 0x0bef8b46,
Oxal69fda7, 0x74df40b7, 0x4e208804, 0x9a756607, 0x038e87c¢8, 0x20211e44,
0x8b7ad4bf, 0xc6403f35, 0x1848e36d, 0x80bdb038, 0x1e62891c, 0x643d2107,
0xbf04d6f8, 0x21092c8c, 0xf644f389, 0x0778404e, Ox7b78adb8, 0xa2c52d53,
0x42157abe, 0xa2253e2e, 0x7bf3fdae, 0x80f594f9, 0x953194e7, 0x77eb92ed,
0xb3816930, 0xda8d9336, 0xbf447469, 0xf26d9483, Oxeebfaed5, 0x71371235,
0xded25f73, 0xb4e59f43, 0x7dbe2d4e, 0x2d37b185, 0x49dc9a63, 0x98c39d98,
0x1301c9a2, 0x389blbbf, 0x0c18588d, Oxa42lclba, 0x7aa3865c, 0x71e08558,
0x3cb5cfcaa, 0x7d239cad4, 0x0297d9dd, 0xd7dc2830, 0x4b37802b, 0x7428ab54,
Oxaeee0347, 0x4b3fbb85, 0x692f2f08, 0x134e578e, 0x36d9e0bf, Oxae8b5fcf,
Oxedb93ecf, 0x2b27248e, 0x170eblef, Ox7dc57fd6, 0x1e760f16, O0xb1136601,
0x864el1b9b, Oxd7ea7319, 0x3ab871bd, Oxcfa4d76f, Oxe31bd782, 0x0dbeb469,
Oxabb96061, 0x5370f85d, O0xffb07e37, Oxda30dOfb, Oxebc977b6, 0x0b98b40f,
0x3a4d0fe6, 0xdf4fc26b, 0x159cf22a, 0xc298d6e2, 0x2b78ef6a, 0x6la94acO,
0xab561187, 0x14eealf0, 0xdf0d4164, 0x19af70ee

B Pseudo-code for decryption

MARS-decrypt(inputD] |, K[ ])

Phase (I): Forward mixing

1. // First add subkeys to data

2. fori=0to3do

3. D|i]=D[i]+K[36+i]

4. [/ Then do eight rounds of forward mixing

5. fori=7 downto O do

6. //rotateD[ | by one word to the left for this round
7. (D[3],D[2],D[1],D[0]) +- (D[2}, D[1],D[0], D[3])
8. [/l and rotate of the source word to the right
9. D[0]=D[0] > 24

10.  //four S-box look-ups

11. DI[3] =DI[3] % [ 2nd byte ofD[0] |

[
12. D[3] =D[3]+ S1[ 3rd byte ofD[0] |
13. D[2] = D[2] + 0| high byte ofD[0] |
14. D[1] =D[1] 4 S1] low byte of D[] |

15. /[ followed by additional mixing operations
16. ifi=2or6then

17. D[0] = D[0] + D[3] // addD[3] back to the source word
18. ifi=3or7then
29. D[0] = D[0] + D[1] // addD[1] back to the source word

20. end-for
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Phase (Il): Keyed transformation

21.// Do 16 rounds of keyed transformation
22. fori=15downto 0 do

23. Il rotateD[ | by one word to the left for this round

24. (D[3],D[2],D[1],D[0]) + (D[2],D[1},D[0], D[3))

25. D[0]=DJ[0] > 13

26. (outl,out2, out3) = E-function D[0], K[2i + 4],K[2i + 5])
27. D[2] =D[2] —out2

28. ifi < 8then /l'last 8 rounds in forward mode
29. D[1] = D[1] — outl

30. D[3] = D[3] & out3

31. else /I first 8 rounds in backwards mode
32. D[3] = D[3] — outl

33. D[1] = D[1] & out3

34. end-if

35. end-for

Phase (lll): Backwards mixing

36. // Do eight rounds of backwards mixing
37.fori=7 downto Odo

38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.

/l rotateD[ | by one word to the left for this round
(D[3],D[2], D[1], D[0}) « (D[2],D[1], D[0], D[3))
/l additional mixing operations
ifi = 0 or 4 then
D[0] = D[0] — D[3] // subtractD[3] from source word
ifi =1 or 5 then
D[0] = D[0] — D[1] // subtractD[1] from source word
// and rotation of the source word to the left
D[0] = D[0] « 24
[l four S-box look-ups
D[3] = D[3] &b S1[ high byte ofD[0] ]
D[2] = D[2] — 0] 3rd byte ofD[0] |
D[1] = D[1] — S1{ 2nd byte ofD[0] |
D[1] = D[1] & [ low byte of D[0] ]

D[
D[2
D[
D[

end-for
/I Then subtract subkeys from data
fori=0to3do

DI[i] = D[i] - KIi]



